Underlying Probability Measure Approximated by Monte Carlo Simulations in Event Prognostics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The prognostic of events, and particularly of failures, is a key step towards allowing preventive decision-making, as in the case of predictive maintenance in Industry 4.0, for example. However, the occurrence time of a future event is subject to uncertainty, so it is natural to think of it as a random variable. In this regard, the default procedure (benchmark) to compute its probability distribution is empirical, through Monte Carlo simulations. Nonetheless, the analytic expression for the probability distribution of the occurrence time of any future event was presented and demonstrated in a recent publication. In this article it is established a direct relationship between these empirical and analytical procedures. It is shown that Monte Carlo simulations numerically approximate the analytically known probability measure when the future event is triggered by the crossing of a threshold.
How to Cite
##plugins.themes.bootstrap3.article.details##
Event prognostics, Time-of-Failure, Monte Carlo simulations
Acuña-Ureta, D. E., & Orchard, M. E. (2022b). Near-instantaneous battery End-of-Discharge prognosis via uncertain event likelihood functions. ISA Transactions.
Acuña-Ureta, D. E., Orchard, M. E., & Wheeler, P. (2021). Computation of time probability distributions for the occurrence of uncertain future events. Mechanical Systems and Signal Processing, 150.
Daigle, M. J., & Goebel, K. (2013). Model-based prognostics with concurrent damage progression processes. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3), 535-546.
Le Son, K., Fouladirad, M., Barros, A., Levrat, E., & Iung, B. (2013). Remaining useful life estimation based on stochastic deterioration models: A comparative study. Reliability Engineering & System Safety, 112, 165-175.
Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335-341.
Orchard, M. E., & Vachtsevanos, G. J. (2009). A particle filtering approach for on-line fault diagnosis and failure prognosis. Trans. Inst. Meas. Control 2009, 31(3-4), 221-246.
Redner, S. (2001). A guide to first-passage processes. Cambridge: Cambridge University Press.
Siegert, A. J. F. (1951). On the first passage time probability problem. Physical Review, 81(4), 617-623.
Sreenuch, T., Alghassi, A., Perinpanayagam, S., & Xie, Y. (2014). Probabilistic Monte-Carlo method for modelling and prediction of electronics component life. International Journal of Advanced Computer Science and Applications (IJACSA), 5(1).
Tamssaouet, F., Nguyen, K. T. P., Medjaher, K., & Orchard, M. E. (2021). Degradation modeling and uncertainty quantification for system-level prognostics. IEEE Systems Journal, 15(2), 1628-1639.
Wei, M., Gu, H., Ye, M.,Wang, Q., Xu, X., &Wu, C. (2021). Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit. Energy Reports, 7, 2862-2871.
Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2019). Lithium-ion battery remaining useful life prediction with Box–Cox Transformation and Monte Carlo simulation. IEEE Transactions on Industrial Electronics, 66(2), 1585-1597.
Zio, E., & Peloni, G. (2011). Particle filtering prognostic estimation of the remaining useful life of nonlinear components. Reliability Engineering & System Safety, 96(3), 403-409.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.