A Fault Detection Technique based on Deep Transfer Learning from Experimental Linear Actuator to Real-World Railway Door Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Suresh Perinpanayagam
Bernadin Namoano
Abstract
Fault detection for railway door systems based on data-driven approaches has been investigated in recent years due to the massive amount of available monitoring data. Despite much attention to its application, the major challenge is the lack of available faulty datasets to build a reliable model since railway maintenance is usually conducted regularly to avoid significant defects from economic and safety points of view. We aimed to tackle the issue by employing transfer learning. Firstly, we built a long-short term memory-based deep learning model using linear actuator experimental datasets. Then, we employed a transfer learning technique to adjust the deep learning model to be available to real-world railway door systems using a small amount of faulty data. As a result, high fault detection accuracy can be obtained at 0.979 as F1 score. The result reveals that an accurate fault detection model can be built even though a large amount of labelled datasets is unavailable. In addition, the proposed method is applicable to other door systems or electro-mechanical actuators since the method is unspecific to physical mechanisms and fault modes, and the only motor current signal is used in this research. The signal is primarily available from the controller or motor drive without additional sensors.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault detection, PHM, Transfer Learning, Deep Learning, Data-driven approach, LSTM, Linear Actuator, Door systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.