Predictive System Reconfiguration for Fulfillment of Future Mission Requirements
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Equipment failures can cause major disruptions to system operations. Although this is the case for engineered systems in general, it is especially applicable to autonomous systems as an operation or maintenance crew may not be available to remediate the situation during operation. Autonomous vehicles, for instance, may be performing critical missions miles away from the nearest manned support personnel when a failure occurs. In this work we propose and test an approach for automated predictive reconfiguration of an autonomous vehicle with the goal of delaying the occurrence of failures that would otherwise compromise mission accomplishment. The proposed approach is based on the Monte Carlo Tree Search (MCTS) method and assumes the availability of models describing relevant failure mechanisms and the relation between degradation and performance for each failure mode. Our solution introduces novel means for taking into account the uncertainty resulting from estimation of relevant parameters and states , with benefits in terms of reduction of computational cost compared to existing solutions. The proposed approach is successfully tested in a simulation environment.
How to Cite
##plugins.themes.bootstrap3.article.details##
predictive, reconfiguration, autonomous systems, monte carlo tree search
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.