Inception Based Deep Convolutional Neural Network for Remaining Useful Life Estimation of Turbofan Engines
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Accurate estimation of the remaining useful life (RUL) is a key component of condition based maintenance (CBM) and prognosis and health management (PHM). Data-based models for the estimation of RUL are of particular interest because expert knowledge of systems is not always available and physical modeling is often not feasible. In this paper, a deep convolutional neural network (CNN) architecture is investigated for its ability to estimate the RUL of turbofan engines. The input to the model is a window of time series data collected from the engine under test. Inputting raw sensor data allows features to be learned instead of manually determined. To incorporate the ability to detect features of differing lengths, inception modules are used in the neural network architecture. The model is trained and tested using the new Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) data set and high prognosis accuracy was achieved. The developed model was used in the 2021 PHM Society Data Challenge and received second place, further validating its ability to accurately estimate RUL.
How to Cite
##plugins.themes.bootstrap3.article.details##
CNN, RUL, convolutional neural network, remaining useful life, inception, turbofan, data challenge
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.