On Adversarial Vulnerability of PHM algorithms – An initial Study
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
With proliferation of deep learning (DL) applications in diverse domains, vulnerability of DL models to adversarial attacks has become an increasingly interesting research topic in the domains of Computer Vision (CV) and Natural Language Processing (NLP). DL has also been widely adopted to diverse PHM applications, where data are primarily timeseries sensor measurements. While those advanced DL algorithms/models have resulted in an improved PHM algorithms’ performance, the vulnerability of those PHM algorithms to adversarial attacks has not drawn much attention in the PHM community. In this paper we attempt to explore the vulnerability of PHM algorithms. More specifically, we investigate the strategies of attacking PHM algorithms by considering several unique characteristics associated with time-series sensor measurements data. We use two real-world PHM applications as examples to validate our attack strategies and to demonstrate that PHM algorithms indeed are vulnerable to adversarial attacks.
How to Cite
##plugins.themes.bootstrap3.article.details##
adversarial machine learning, time-series, prognostics, security, Vulnerability
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.