Bayesian Network Based Causal Map Generation and Root Cause Identification in Complex Industrial Processes
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Real-time root cause identification (RCI) of faults or abnormal events in industries gives plant personnel the opportunity to address the faults before they progress and lead to failure. RCI in industrial systems must deal with their complex behavior, variable interactions, corrective actions of control systems and variability in faulty behavior. Bayesian networks (BNs) is a data-driven graph-based method that utilizes multivariate sensor data generated during industrial operations for RCI. Bayesian networks, however, require data discretization if data contains both discrete and continuous variables. Traditional discretization techniques such as equal width (EW) or equal frequency (EF) discretization result in loss of dynamic information and often lead to erroneous RCI. To deal with this limitation, we propose the use of a dynamic discretization technique called Bayesian Blocks (BB) which adapts the bin sizes based on the properties of data itself. In this work, we compare the effectiveness of three discretization techniques, namely EW, EF and BB coupled with Bayesian Networks on generation of fault propagation (causal) maps and root cause identification in complex industrial systems. We demonstrate the performance of the three methods on the industrial benchmark Tennessee-Eastman (TE) process. For two complex faults in the TE process, the BB with BN method successfully diagnosed correct root causes of the faults, and reduced redundancy (up to 50%) and improved the propagation paths in causal maps compared to other two techniques.
How to Cite
##plugins.themes.bootstrap3.article.details##
Root Cause Identification, Fault Propagation Path, Bayesian Networks, Bayesian Blocks Discretization
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.