Diagnosing Systems through Approximated Information
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This article presents a novel approach to diagnose faults in production machinery. A novel data-driven approach is presented to learn an approximation of dependencies between variables using Spearman correlation. It is further shown, how the approximation of the dependencies are used to create propositional logic rules for fault diagnosis. The article presents two novel algorithms: 1) to estimate dependencies from process data and 2) to create propositional logic diagnosis rules from those connections and perform consistency based fault diagnosis. The presented approach was validated using three experiments. The first two show that the presented approach works well for injection molding machines and a simulation of a four-tank system. The limits of the presented method are shown with the third experiment containing sets of highly correlated signals.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault Diagnosis, Spearman, Propositional Logic, GDE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.