Evaluating and Optimizing Analytic Signals
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Condition-based maintenance is becoming a viable option for mitigating the high cost of unscheduled repairs. However, as data-driven approaches gain favor, there is a need to preserve the underlying physical degradation models in order to reasonably justify preventative maintenance. One solution is a class of models which augment physics with data-driven heuristics. The nature of the underlying degradation is explained with physics while detectability and decision nuances can be overcome with statistics and signal processing.
This paper describes a process for evaluating analytical models and using this evaluation for improving overall detection. The method involves optimizing a tunable filter to process signals such that the precursor signature preceding failure events approximates a known degradation behavior.
How to Cite
##plugins.themes.bootstrap3.article.details##
Evaluation, Signal Processing, Classifier
[3] J. H. Luo, M. Namburu, K. Pattipati, Q. Liu, M. Kawamoto, S. Chigusa, "Model-based prognostic techniques [maintenance applications]," Proceedings of AUTOTESTCON 2003, IEEE Systems Readiness Technology Conference. 22-25, 330-340(2003).
[4] V. Fornlof, D. Galar, A. Syberfeldt and T. Almgren, “Maintenance, Prognostics and Diagnostic Approaches for Aircraft engines,” IEEE Metrology for Aerospace (2016).
[5] J.P. Sprong, X. Jiang, and H. Polinder, Deployment of Prognostics to Optimize Aircraft Maintenance - A Literature Review,” Proceedings of the Annual Conference of the Prognostics and Health Management Society (2019).
[6] K. Pipe, “Practical Prognostics for Condition Based Maintenance,” International Conference on Prognostics and Health Management (2008).
[7] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition Letters. 27 (8): 861–874 (2006).
[8] R. F. Estrada and E. A. Starr, “50 Years of Acoustical Signal Processing for Detection: Coping with the Digital Revolution,” IEEE Annals of the History of Computing 65-78, (2005).
[9] R. B. Abernethy, J. E. Breneman, C. H. Medlin, G. L. Reinman. Weibull Analysis Handbook. West Palm Beach, Pratt and Whitney Government Products Division, Nov. 1983.
[10] S. Pattabhiraman, C. Gogu, N. Kim, R. T. Haftka, and C. Bes, “Skipping unnecessary maintenance using an on-board structural health monitoring system,” Proc IMechE Part O: J Risk and Reliability 226(5) 549-560, (2012).
[11] X. Lei, and P. A. Sandborn. "PHM-based wind turbine maintenance optimization using real options." Int J Progn Health Manag 7.1 (2016): 1-14
[12] X. Lei, P. A. Sandborn, “Maintenance Scheduling Based on Remaining Useful Life Predictions for Wind Farms Managed Using Power Purchase Agreements,” Renewable Energy, vol. 116, Part B, pp.188-198 (2018).
[13] Z.Tian, D. Lin, and B. Wu, “Condition based maintenance optimization considering multiple objectives”
[xx] W. H. J. M. Geudens, P. J. M. Sonnemans, V. T. Petkova and A. C. Brombacher, "Soft reliability, a new class of problems for innovative products: "how to approach them"," Proceedings of Annual Reliability and Maintainability Symposium, 374-378 (2005).
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.