Flight Anomaly Tracking for Improved Situational Awareness: Case Study of Germanwings Flight 9525
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Surveillance technologies play an important role in civil aviation safety by providing situational awareness to air traffic controllers and pilots. Tens of thousands of aircrafts operate daily, and each one of them needs to be tracked by combining data from several data sources including ADS-B and radar data for maintaining the safety of airspace. These heterogeneous data sources are aggregated together with schedule and flight status data from airlines and airports. This aggregate data is used to provide appropriate flight tracking of individual aircrafts and helps ensuring that the air traffic operates with maximum safety and minimum delays. This is achieved by a complex system of command centers, control towers, radar ground stations, and automated surveillance equipment. As air travel grows each year, global aviation safety continues to improve thanks to these sophisticated systems. Yet, it is unrealistic to expect that the system would detect, identify and respond to all flight anomalies. As was the case in Germanwings flight 9525, the flight anomalies that are not detected in time may result in catastrophes. This paper analyzes the unfortunate case of Germanwings flight 9525 and proposes an automated flight anomaly detection technology to improve situational awareness for air traffic controllers and pilots, and enhance aviation safety.
How to Cite
##plugins.themes.bootstrap3.article.details##
Data-driven detection methodologies, flight anomalies
Desell, T., Clachar S., Higgins, J. & Wild, B. (2014). Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data. Parallel
Problem Solving from Nature – PPSN XIII, pp. 771-781.
Kwatny, H. G., Dongmo, J. T., Chang B. C., Bajpai G., Yasar, M., & Belcastro C. (2012). Nonlinear Analysis of Aircraft Loss of Control. Journal of Guidance
Control and Dynamics, vol. 36, no. 1, pp. 149-162.
Rao, C., Ray, A., Sarkar S. & Yasar, M. (2009). Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. Signal Image and Video Processing, vol. 3, no. 2, pp. 101-114.
Sarkar, S., Sarkar, S., Virani, N., Ray A. & Yasar, M. (2014). Sensor Fusion for Fault Detection & Classification in Distributed Physical Processes.
Frontiers in Robotics and AI, vol. 1, article 16.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.