References
Angeli, C. (2010). Diagnostic expert systems: from expert’s knowledge to real-time systems. In P. S. Sjja & R. Akerkar (Eds.), Advanced knowledge based systems: Model, Applications & Research (Vol. 1, pp. 50-73).
Bengtsson, M., Olsson, E., Funk, P., & Jackson, M. (2004). Design of condition based maintenance system - A case study using sound analysis and case-based reasoning. Condition Based Maintenance Systems - An Investigation of Technical Constituents and Organizational Aspects. Malardalen University, Eskilstuna, Sweden, 57.
Bonissone, P. P., & Varma, A. (2005). Predicting the best units within a fleet: prognostic capabilities enabled by peer learning, fuzzy similarity, and evolutionary design process. Fuzzy Systems, 2005. FUZZ'05. The 14th IEEE International Conference on (pp. 312-318), May 25-25. IEEE.
Cecati, C. (2015). A Survey of Fault Diagnosis and Fault-Tolerant Techniques - Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches. IEEE Transactions On In Transactions Electronics.
Dai, X., & Gao, Z. (2013). From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. Industrial Informatics, IEEE Transactions on, 9(4), 2226-2238.
Ghodrati, B. (2005). Reliability and operating environment based spare parts planning. Doctoral dissertation. University of Technology, Lulea, Sweden.
Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6-23.
Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20.7, 1483-1510.
Li, Q., Gao, Z. B., & Shao, L. Q. (2014). An operating condition classified prognostics approach for Remaining Useful Life estimation. Prognostics and Health Management (PHM), 2014. IEEE Conference on (pp. 1-9), June 22-25. IEEE.
Liao, L., & Lee, J. (2009). A novel method for machine performance degradation assessment based on fixed cycle features test. Journal of Sound and Vibration, 326(3), 894-908.
Liu, J., Djurdjanovic, D., Ni, J., Casoetto, N., & Lee, J. (2007). Similarity based method for manufacturing process performance prediction and diagnosis. Computers in industry, 58(6), 558-566.
Medina-Oliva, G., Voisin, A., Monnin, M., Peysson, F., Léger, J.-B. (2012). Prognostics assessment using fleet-wide ontology. Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012, September, p. CDROM.
Mobley, R. Keith (2002). An introduction to predictive maintenance. Butterworth-Heinemann.
Monnin, M., Abichou, B., Voisin, A., & Mozzati, C. (2011). Fleet historical cases for predictive maintenance. The International Conference Surveillance, 6, 25-26.
Moss, T. R. (1991). Uncertainties in reliability statistics. Reliability Engineering & System Safety, 34(1), 79-90.
Pecht, M., & Jaai, R. (2010). A prognostics and health management roadmap for information and electronics - rich systems. Microelectronics Reliability, 50.3, 317-323.
Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: a review. The International Journal of Advanced Manufacturing Technology, 50.1-4, 297-313.
Rodríguez, G. (2007). Lecture Notes on Generalized Linear Models. URL: http://data.princeton.edu/wws509/notes/
Saxena, A., Sankararaman, S., & Goebel, K. (2014). Performance evaluation for fleet-based and unit-based prognostic methods. Second European conference of the Prognostics and Health Management society.
Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation - a review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1-14.
Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803-1836.
Tsang, A. H., Yeung, W. K., Jardine, A. K., & Leung, B. P. (2006). Data management for CBM optimization. Journal of Quality in Maintenance Engineering, 12(1), 37-51.
Turrin, S., Subbiah, S., Leone, G., & Cristaldi, L. (2015). An algorithm for data-driven prognostics based on statistical analysis of condition monitoring data on a flee level. Instrumentation and Measurement Technology Conference (I2MTC), 2015. IEEE International (pp. 629-634), May 11-14. IEEE.
Voisin, A., Medina-Oliva, G., Monnin, M., Leger, J. B., & Iung, B. (2013). Fleet-wide diagnostic and prognostic assessment. Annual Conference of the Prognostics and Health Management Society, October, p. CDROM.
Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. Prognostics and Health Management (PHM), 2008. International Conference (pp. 1-6), October 06-09. IEEE.