Diagnosis and Prognosis of Fuel Injectors based on Control Adaptation
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Spark Ignition Direct Injection (SIDI) technology enables better fuel economy and tail pipe emissions in vehicles equipped with gasoline engines. The SIDI technology depends on the ability of the system to deliver fuel at high pressure directly into the combustion chamber, hence making the
fuel injectors key subcomponents. Reliable performance of fuel injectors is vital as it directly relates to the operability of the vehicle, and hence customer satisfaction in case of failure. It, therefore, becomes very important to devise a scheme that can effectively diagnose and prognose such a component. In this article, algorithm development for diagnosis and a pathway to prognosis of fuel injectors is presented. We do not propose any additional sensing capability, and make use of what is available in most of the production vehicles today across the industry. In particular, the control adaptation of fuel control and the associated diagnostics that are mandated by regulators are employed to generate schemes for fault detection, fault isolation, and fault prediction. Results are presented from vehicle test data that allow development of such a scheme for fuel injectors.
How to Cite
##plugins.themes.bootstrap3.article.details##
prognostics, Fuel system, GDI, SIDI
Ferguson, C. R., & Kirkpatrick, A. T. (2015). Internal combustion engines: applied thermosciences. John Wiley & Sons.
Lanigan, P. E., Kavulya, S., Narasimhan, P., Fuhrman, T. E., & Salman, M. A. (2011). Diagnosis in automotive systems: A survey. Parallel Data Laboratory Carnegie Mellon University, Pittsburgh, 11–110.
Merritt, H. E. (1967). Hydraulic control systems. JohnWiley & Sons.
Smith, J. D., & Sick, V. (2006). A multi-variable high-speed imaging study of ignition instabilities in a spray-guided direct-injected spark-ignition engine
(Tech. Rep.). SAE Technical Paper.
Takagi, Y. (1998). A new era in spark-ignition engines featuring high-pressure direct injection. In Symposium (international) on combustion (Vol. 27, pp. 2055–2068).
Zhao, F., Lai, M.-C., & Harrington, D. L. (1999). Automotive spark-ignited direct-injection gasoline engines. Progress in energy and combustion science, 25(5), 437–562.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.