Lithium-ion Battery Remaining Useful Life Prediction with Long Short-term Memory Recurrent Neural Network
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Lithium-ion batteries play critical roles in many electronic devices. It is necessary to develop a reliable and accurate remaining useful life (RUL) prediction approach to provide timely maintenance or replacement of battery systems. A novel RUL prediction approach based on Long Short-term Memory (LSTM) Recurrent Neural Network (RNN) is proposed in this paper. LSTM is able to capture long-term dependencies and model sequential data among the capacity degradation of lithium-ion batteries. The advantages of our proposed method include: 1) obtaining high prediction accuracy without accurate physics-based model or expertise and 2) decreasing the cumulation errors by multi-step ahead prediction each time, while traditional RUL method predicts one-step ahead once and then uses the current estimated value to predict next one, which causes cumulation errors increased. The Center for Advanced Life Cycle Engineering (CALCE) battery datasets are used to demonstrate the effectiveness of the proposed method. The results show that, compared with echo state networks (ESN), the proposed method has higher accuracy, more stable and reliable performance for lithium-ion batteries RUL prediction.
How to Cite
##plugins.themes.bootstrap3.article.details##
Lithium-ion battery, remaining useful life prediction, Long short-term memory recurrent neural network
Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on (pp. 6645-6649). IEEE.
He W., Williard N., Osterman M., & Pecht M. (2011). Prognostics of Lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method. Journal of Power Sources., 196, 10314–10321.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
Hu, C., Youn, B. D., Wang, P., & Yoon, J. T. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering & System Safety, 103, 120-135.
Li, H., Pan, D., & Chen, C. P. (2014). Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(7), 851-862.
Liu, D., Xie, W., Liao, H., & Peng, Y. (2015). An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Transactions on Instrumentation and Measurement, 64(3), 660-670.
Liu D., Zhou J. & Guo L. (2015). Survey on lithium-ion battery health assessment and cycle life estimation. Chinese Journal of Scientific Instrument, 36(1), 1-16.
Liu, Y., Zhao, G., & Peng, X. (2016). A fusion prognostic approach based on multi-kernel relevance vector machine and Bayesian model averaging. In Prognostics and System Health Management Conference (PHM-Chengdu), 2016 (pp. 1-6). IEEE.
Miao Q., Xie L., Cui H., Liang, W. & Pecht M. (2013). Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Rel., vol. 53, pp. 805-810.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814).
Xing, Y., Ma, E. W., Tsui, K. L., & Pecht, M. (2013). An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability, 53(6), 811-820.
Yang, W. A., Xiao, M., Zhou, W., Guo, Y., & Liao, W. (2016). A hybrid prognostic approach for remaining useful life prediction of lithium-ion batteries. Shock and Vibration, 2016.
You, Q., Jin, H., Wang, Z., Fang, C., & Luo, J. (2016). Image captioning with semantic attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4651-4659).
Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network. In Aircraft Utility Systems (AUS), IEEE International Conference on (pp. 135-140). IEEE.
Zhao, R., Yan, R., Wang, J., & Mao, K. (2017). Learning to monitor machine health with convolutional bi-directional lstm networks. Sensors, 17(2), 273.
Wang, S., & Jiang, J. (2015). Learning natural language inference with LSTM. arXiv preprint arXiv:1512.08849.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.