Evolving Fuzzy Classifier based on Clustering Algorithm and Drift Detection for Fault Diagnosis Applications

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 29, 2014
Maurilio Inacio Andre Lemos Walmir Caminhas

Abstract

Nowadays, in several areas, efficient fault diagnosis methods for complex machinery and equipments are required. Several fault diagnosis methods based on different theories and approaches have been proposed in the literature. In general, these methods use mathematical/statistical models, accumulated experience, or even process historical data to perform fault diagnosis. Although methods based on models or experience have shown to be effective, they have the disadvantage of requiring previous knowledge of the dynamic system in question. On the contrary, methods based on process historical data do not require a prior knowledge, they are based solely on data obtained directly from the dynamic system. The application of so-called “Evolving Intelligent Systems” to accomplish fault diagnosis from process data have been shown a promising approach. This paper proposes an evolving fuzzy classifier based on a new approach that combines a recursive clustering algorithm and a drift detection method and its application on dynamic systems fault diagnosis. The novel approach provides greater robustness to outliers and noise present in data from process sensors. The classifier is evaluated in fault diagnosis of an interacting tank system and the results are promising.

How to Cite

Inacio, M. ., Lemos, A. ., & Caminhas, . W. . (2014). Evolving Fuzzy Classifier based on Clustering Algorithm and Drift Detection for Fault Diagnosis Applications. Annual Conference of the PHM Society, 6(1). https://doi.org/10.36001/phmconf.2014.v6i1.2435
Abstract 115 | PDF Downloads 105

##plugins.themes.bootstrap3.article.details##

Keywords

Diagnosis and fault isolation methods

References
Abellan-Nebot, J. V., & Subiro ́n, F. R. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology, 47, 237-257. DOI: 10.1007/s00170-009-2191-8.

Angelov, P., & Filev, D. (2003). Online Design of Takagi- Sugeno Models. In T. Bilgic ̧, B. D. Baets, & O. Kay- nak (Eds.), Fuzzy Sets and Systems — IFSA 2003 (Vol. 2715, p. 576-584). Springer Berlin Heidelberg. DOI: 10.1007/3-540-44967-1-69.

Angelov, P., Filev, D., & Kasabov, N. (2010). Evolving Intelligent Systems: Methodology and Applications. New York, USA: John Willey & Sons.

Braga, A. R., Jota, F. G., Polito, C. M., & Pena, R. T. (1995). Development of an interacting tank system for the study of advanced process control strategies. In Proceedings of the 38th Midwest Symposium on Circuits and Systems (Vol. 1, p. 441-444). DOI: 10.1109/MWS- CAS.1995.504471

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. New York, USA: John Wiley & Sons.

Filev, D., Chinnam, R. B., Tseng, F., & Baruah, P. (2010). An Industrial Strength Novelty Detection Framework for Autonomous Equipment Monitoring and Diagnostics. IEEE Transactions on Industrial Informatics, 6(4), 767-779. DOI: 10.1109/TII.2010.2060732.

Filev, D., & Georgieva, O. (2010). An extended version of the Gustafson–Kessel algorithm for evolving data stream clustering. In P. Angelov, D. Filev, & N. Kasabov (Eds.), Evolving Intelligent Systems: Methodology and Applications (p. 273-300). New York, USA: John Wi- ley & Sons.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In A. L. C. Bazzan & S. Labidi (Eds.), Advances in Artificial Intelligence – SBIA 2004 (p. 286-295). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-28645-5-29.

Gustafson, D. E., & Kessel, W. C. (1979). Fuzzy clustering with fuzzy covariance. In Proceedings of IEEE Conference on Decision and Control (p. 761-766).

Hastie, T., Tibshirani, R., & Friedman, J. (n.d.). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, USA: Springer-Verlag.

Jain, A. K. (2010). Data clustering: 50 years beyond K- means. Pattern Recognition Letters, 31(8), 651–666. DOI: 10.1016/j.patrec.2009.09.011

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: a computational approach to learning and machine intelligence. Upper Saddle River, USA: Prentice-Hall, Inc.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510. DOI: 10.1016/j.ymssp.2005.09.012

Kasabov, N., & Song, Q. (2002). DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time Series Prediction. IEEE Transactions on Fuzzy Systems, 10(2), 144-154. DOI: 10.1109/91.995117

Kelly, P. M. (1994). An algorithm for merging hyper ellipsoidal clusters (Tech. Rep.). LA-UR-94-3306, Los Alamos National Laboratory, Los Alamos, NM.

Lemos, A., Caminhas, W., & Gomide, F. (2011). Multi- variable Gaussian Evolving Fuzzy Modeling System. IEEE Transactions on Fuzzy Systems, 19(1), 91-104. doi: 10.1109/TFUZZ.2010.2087381

Lemos, A., Caminhas, W., & Gomide, F. (2013). Adap- tive Fault Detection and Diagnosis Using an Evolving Fuzzy Classifier. Information Sciences, 220, 64-85. DOI: DOI: 10.1016/j.ins.2011.08.030

Leng, G., McGinnity, T. M., & Prasad, G. (2005). An Approach for On-Line Extraction of Fuzzy Rules Using a Self-Organising Fuzzy Neural Network. Fuzzy Sets & Systems, 150(2), 211–243. DOI: DOI: 10.1016/j.fss.2004.03.001

Lima, E., Hell, M., Gomide, F., & Ballini, R. (2010). Evolv- ing fuzzy modeling using participatory learning. In P. Angelov, D. Filev, & N. Kasabov (Eds.), Evolving Intelligent Systems: Methodology and Applications (p. 67-87). New York, USA: John Wiley & Sons.

Lughofer, E. (2008). FLEXFIS: A robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models. IEEE Transactions on Fuzzy Systems, 16(6), 1393-1410. doi: DOI: 10.1016/j.fss.2004.03.001

Lughofer, E., & Guardiola, C. (2008). Applying Evolving Fuzzy Models with Adaptive Local Error Bars to On-line Fault Detection. In Proceedings of 3rd International Workshop on Genetic and Evolving Fuzzy Systems - GEFS 2008 (p. 35-40). DOI: 10.1109/GEFS.2008.4484564.

Mitchell, T. M. (1997). Machine Learning. New York, USA: McGraw-Hill.

Rong, H. J., Sundararajan, N., Huang, G. B., & Saratchan- dran, P. (2006). Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets & Systems, 157(9), 1260-1275. DOI: 10.1016/j.fss.2005.12.011

Sebastia ̃o, R., & Gama, J. (2009). A Study on Change Detection Methods. In Proceedings of 4th Portuguese Conference on Artificial Intelligence (p. 353-364).

Soleimani-B., H., Lucas, C., & Araabi, B. N. (2010). Re- cursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling. Evolving Systems, 1(1), 59-71. DOI: 10.1007/s12530-010-9006-x

Vachtsevanos, G., Lewis, F., Roeme, M., Hess, A., & Wu, B. (2006). Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Hoboken, USA: John Wiley & Sons.

Venkatasubramanian, V. (2005). Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities. Comput- ers and Chemical Engineering, 29(6), 1253-1263. DOI: 10.1016/j.compchemeng.2005.02.026.
Section
Technical Research Papers