A Novel Linear Polarization Resistance Corrosion Sensing Methodology for Aircraft Structure
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
A direct method of measuring corrosion on a structure using a micro-linear polarization resistance (μLPR) sensor is presented. The new three-electrode μLPR sensor design presented in this paper improves on existing LPR sensor technology by using the structure as part of the sensor system, allowing the sensor electrodes to be made from a corrosion resistant or inert metal. This is in contrast to a two- electrode μLPR sensor where the electrodes are made from the same material as the structure. A controlled experiment, conducted using an ASTM B117 salt fog, demonstrated the three-electrode μLPR sensors have a longer lifetime and better performance when compared to the two-electrode μLPR sensors. Following this evaluation, a controlled experiment using the ASTM G85 Annex 5 standard was performed to evaluate the accuracy and precision of the three-electrode μLPR sensor when placed between lap joint specimens made from AA7075-T6. The corrosion computed from the μLPR sensors agreed with the coupon mass loss to within a 95% confidence interval. Following the experiment, the surface morphology of each lap joint was determined using laser microscopy and stylus-based profilometry to obtain local and global surface images of the test panels. Image processing, feature extraction, and selection tools were then employed to identify the corrosion mechanism (e.g. pitting, intergranular).
How to Cite
##plugins.themes.bootstrap3.article.details##
corrosion, failure analysis, sensors, structural health management, microstructure, fault diagnostics
Buchheit, R. G., Hinkebein, T., Maestas, L., & Montes, L. (1998, March 22-27). Corrosion monitoring of concrete-lined brine service pipelines using ac and dc electrochemical methods. In Corrosion 98. San Diego, Ca.
Burstein, G. T. (2005, December). A century of tafel’s equation: 1905-2005. Corrosion Science, 47(12), 2858- 2870.
G102, A. S. (1994). Standard practice for calculation of corrosion rates and related information from electrochemical measurements. Annual Book of ASTM Standards, 03.02.
G59, A. S. (1994). Standard practice for conducting potentio- dynamic polarization resistance measurements. Annual Book of ASTM Standards, 03.02.
Harris, S. J., Mishon, M., & Hebbron, M. (2006, October). Corrosion sensors to reduce aircraft maintenance. In Rto avt-144 workshop on enhanced aircraft platform availability through advanced maintenance concepts and technologies. Vilnius, Lithuania.
Herder, P., & Wijnia, Y. (2011). Asset management: The state of the art in europe from a life cycle perspective (T. van der Lei, Ed.). Springer.
Huston, D. (2010). Structural sensing, health monitoring, and performance evaluation (B. Jones & W. B. S. J. Jnr., Eds.). Taylor and Francis.
Introduction to corrosion monitoring. (2012, August 20). Online. Available from http://www.alspi.com/introduction.htm
Kossowsky, R. (1989). Surface modification engineering (Vol. 1). Boca Raton, Florida: CRC Press, Inc.
Twomey, M. (1997). Inspection techniques for detecting corrosion under insulation. Material Evaluation, 55(2), 129-133.
Wagner, C., & Traud, W. (1938). Elektrochem, 44, 391.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.