Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 29, 2014
Kun S. Marhadi Georgios Alexandros Skrimpas

Abstract

Setting optimal alarm thresholds in vibration based condition monitoring system is inherently difficult. There are no established thresholds for many vibration based measurements. Most of the time, the thresholds are set based on statistics of the collected data available. Often times the underlying probability distribution that describes the data is not known. Choosing an incorrect distribution to describe the data and then setting up thresholds based on the chosen distribution could result in sub-optimal thresholds. Moreover, in wind turbine applications the collected data available may not represent the whole operating conditions of a turbine, which results in uncertainty in the parameters of the fitted probabil- ity distribution and the thresholds calculated. In this study Johnson distribution is used to identify shape, location, and scale parameters of distribution that can best fit vibration data. This study shows that using Johnson distribution can eliminate testing or fitting various distributions to the data, and have more direct approach to obtain optimal thresholds. To quantify uncertainty in the thresholds due to limited data, implementations with bootstrap method and Bayesian inference are investigated.

How to Cite

S. Marhadi, K., & Alexandros Skrimpas, . G. . (2014). Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System. Annual Conference of the PHM Society, 6(1). https://doi.org/10.36001/phmconf.2014.v6i1.2398
Abstract 271 | PDF Downloads 150

##plugins.themes.bootstrap3.article.details##

Keywords
References
Section

Most read articles by the same author(s)