A Data Driven Method for Model Based Diagnostics and Prognostics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This article’s model based diagnostics system has four modules. Diagnosis and fault location forms physics models of the machine, measures states off the real in-service machine, generates simulated machine states and simulated sensor outputs for the machine model with loads same as the real machine, and compares simulated sensor outputs to real sensor outputs. The parameter tuning module adjusts (tunes) the parameters of the model until the simulated sensor outputs closely mimic real sensor outputs. Tuning transfers information on the system’s health from the sensor data to the model’s parameters. Parameters changed from nominal values locate faults and bad parts. For the health assessment module to assess machine health, we view a machine as a “machine channel” that organizes power and information flow through the machine. Machines focus power via an organization inherent in its components and design. Broken or degraded components disrupt this organization and the power and information flows. Shannon’s information theory for communications channels can then be applied as a health metric to this “machine channel”. Ageing of components degrades machine functional health. To prognose future health, differential equations that model ageing of the machine’s components are formulated and solved. These equations predict component degradation, and update values of parameters in the model associated with component ageing. With these future parameter values, simulations of the machine operation model can then predict “future” machine behavior, and system health. This article demonstrates these methods on motors and a pump.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnosis, strain sensors, Planetary gearbox
Bryant, M.D., (2014). Modeling Degradation Using Thermodynamic Entropy, submitted to PHM 2014 Conference.
Bryant, M.D., Khonsari, M.M. & Ling, F.F. (2008). On the thermodynamics of degradation, Proceedings of Royal Society of London Series A, vol. 464 (2096), pp. 2001- 2014, doi:10.1098/rspa.2007.0371.
Bryant, M.D., & Choi, J.H. (2012). Model based fault diagnostics of induction motor and centrifugal pump, Proceedings of MFPT 2012 Conference. April 24- 26, Dayton, OH.
Bryant M.D., Nakhaeinejad M. & Choi J., (2011). Model based diagnostics and fault assessment of induction motors with incipient faults, Proceedings of the Society for Experimental Mechanics Series, vol. 8, pp. 439 – 449.
Costuros T., (2013). Application of Communication Theory to Health Assessment, Degradation Quantification, and Robot Cause Diagnosis, Doctoral dissertation, University of Texas at Austin, Austin, TX, https://repositories.lib.utexas.edu/bitstream/handle/2152 /21566/COSTUROS-DISSERTATION-2013.pdf.
Costuros, T. & Bryant, M.D. (2014). Application of information theory’s channel capacity as an industry machine health and diagnostic metric. Proceedings of MFPT 2014
Conference. May 19-22, Virginia Beach, VA.
Haykin, S. S. (2001). Kalman Filtering and Neural Networks. New York: Wiley.
Nakhaeinejad, M. & Bryant, M. D., (2011). Observability Analysis for Model-Based Fault Detection and Sensor Selection in Induction Motors, Journal of Measurement Science and Technology, vol. 22(7), pp. 075202.
Rengarajan, S.B., (2010). A Method for Parameter Estimation and System Identification for Model Based Diagnostics Masters Thesis, University of Texas at Austin, Austin, TX.
Shannon, C.E. & Weaver, W., (1948). The Mathematical Theory of Communication, Urbana, IL: The University of Illinois Press.
Shannon C. E. (1949). Communication in the presence of noise, Proceedings of the IRE, vol. 37, pp. 10 – 21.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.