Prognostic Modeling of Valve Degradation within Power Stations
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Within the field of power generation, aging assets and a desire for improved maintenance decision-making tools have led to growing interest in asset prognostics. Valve failures can account for 7% or more of mechanical failures, and since a conventional power station will contain many hundreds of valves, this represents a significant asset base. This paper presents a prognostic approach for estimating the remaining useful life (RUL) of valves experiencing degradation, utilizing a similarity-based method. Case study data is generated through simulation of valves within a 400MW Combined Cycle Gas Turbine power station. High fidelity industrial simulators are often produced for operator training, to allow personnel to experience fault procedures and take corrective action in a safe, simulation environment, without endangering staff or equipment. This work repurposes such a high fidelity simulator to generate the type of condition monitoring data which would be produced in the presence of a fault. A first principles model of valve degradation was used to generate multiple run-to-failure events, at different degradation rates. The associated parameter data was collected to generate a library of failure cases. This set of cases was partitioned into training and test sets for prognostic modeling and the similarity based prognostic technique applied to calculate RUL. Results are presented of the technique’s accuracy, and conclusions are drawn about the applicability of the technique to this domain.
How to Cite
##plugins.themes.bootstrap3.article.details##
prognostics, simulation, Data Driven, Valve Degradation
Harrison, S. (2013), The Case for Simulation and Visualisation Based Training, Marine Electrical and Control Systems Safety Conference, (MECSS 2013), October 2-3, Amsterdam
Heng, A., Tan, A. C. C., Mathew, J., Montgomery, N, Banjevic, D. & Jardine, A. K. S., (2009), Intelligent Condition-Based Prediction of Machinery Reliability, Mechanical Systems and Signal Processing, Vol. 23,(Issue 5), Pages: 1600 – 1614, doi:10.1016/j.ymssp.2008.12.006
Latcovich J., Åstrom T., Frankhuizen P., Fukushima, S., Hamberg H., & Keller, S., (2005), Maintenance and Overhaul of Steam Turbines, International Association of Engineering Insurers 38th Annual Conference, September, Moscow
McGhee M. J., Catterson V.M., McArthur S.D.J. & Harrison E. (2013), Using a High Fidelity CCGT Simulator for building Prognostic Systems, European Technology Conference 2013. EuroTechCon 2013, November 19-21, Glasgow, UK
Radu G., Mladin D. & Prisecaru I. (2013) Analysis of potential common cause failure events for Romania- TRIGA 14 MW reactor, Nuclear Engineering and Design, Vol. 265, Pages: 164-173, doi: 10.1016/j.nucengdes.2013.06.027
Sheppard, J.W., Kaufman, M.A. & Wilmer, T.J. (2009), IEEE Standards for Prognostics and Health Management, IEEE Aerospace and Electronic Systems Magazine, Vol. 24, (Issue: 9), Pages: 34 – 41, doi: 10.1109/MAES.2009.5282287
Sun, B., Zeng, S., Kang, R. & Pecht, M.G. (2012) Benefits and Challenges of System Prognostics, IEEE Transactions on Reliability, Vol. 61, (Issue: 2), Pages: 323 – 335, doi: 10.1109/TR.2012.2194173
Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognosis for engineering system. Hoboken, NJ: John Wiley & Sons, Inc
Wang, T., Yu J., Siegel D. & Lee J. (2008). A Similarity Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems, International Conference on Prognostics and Health Management, 2008. PHM 2008, October 6-9, Denver, CO, 10.1109/PHM.2008.4711421.
Wenbin Wang & Carr, M.,(2010), A Stochastic Filtering Based Data Driven Approach for Residual Life prediction and Condition Based Maintenance Decision Making Support, Prognostics and Health Management Conference, 2010. PHM '10, Jan 12-14, Macao, 10.1109/PHM.2010.5413485
Westinghouse Nuclear, (2013), AP1000 PWR Nuclear Reactor Brochure.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.