Detection of Wind Turbine Power Performance Abnormalities Using Eigenvalue Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Condition monitoring of wind turbines is a field of continuous research and development as new turbine configurations enter into the market and new failure modes appear. Systems utilising well established techniques from the energy and industry sector, such as vibration analysis, are commercially available and functioning successfully in fixed speed and variable speed turbines. Power performance analysis is a method specifically applicable to wind turbines for the detection of power generation changes due to external factors, such as icing, internal factors, such as controller malfunction, or deliberate actions, such as power de-rating. In this paper, power performance analysis is performed by sliding a time-power window and calculating the two eigenvalues corresponding to the two dimensional wind speed - power generation distribution. The power is classified into five bins in order to achieve better resolution and thus identify the most probable root cause of the power deviation. An important aspect of the proposed technique is its independence of the power curve provided by the turbine manufacturer. It is shown that by detecting any changes of the two eigenvalues trends in the five power bins, power generation anomalies are consistently identified.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnosis, Wind turbines, Pattern recognition
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer New York.
Butler, S., Ringwood, J., & O’Connor, F. (2013). Exploiting scada system data for wind turbine performance monitoring. In Control and fault-tolerant systems (systol),2013 conference on.
Cios, K. J., Pedrycz, W., Swiniarski, R. W., & Kurgan, L. A. (2007). Data mining: A knowledge discovery approach. Springer.
Lu, B., Li, Y., Wu, X., & Yang, Z. (2009). A review of recent advances in wind turbine condition monitoring and fault diagnosis. In Power electronics and machines in wind applications (pp. 1–7).
Lydia, M., Selvakumar, A. I., Kumar, S. S., & Kumar, G. E. P. (2013). Advanced algorithms for wind turbine power curve modeling. IEEE Transactions on Sustainable Energy, 4, 827–835.
Marhadi, K., & Hilmisson, R. (2013, June). Simple and effective technique for early detection of rolling element bearing fault: A case study in wind turbine application. In International congress of condition monitoring and diagnostic engineering management (pp. 94–97).
Mchali, M., Barthelmie, R. J., Frandsen, S. T., Jensen, L. E., & Rthor, P.-E. (2006). Wake effects at Horns Rev and their influence on energy production. In European wind energy conference.
Park, J.-Y., Lee, J.-K., Oh, K.-Y., & Lee, J.-S. (2014). Development of a novel power curve monitoring method for wind turbines and its field tests. IEEE Transactions on Energy Conversion.
Schlechtingen, M., Santos, I. F., & Achiche, S. (2013). Using data-mining approach for wind turbine power curve monitoring: A comparative study. IEEE Transactions on Sustainable Energy, 4, 671–679.
Uluyol, O., Parthasarathy, G., Foslien, W., & Kim, K. (2011). Power curve analytic for wind turbine performance monitoring and prognostics. In Annual conference of the prognostics and health management society (Vol. 20).
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.