Anomaly Detection in Gas Turbine Compressor of a Power Generation Plant using Similarity-based Modeling and Multivariate Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper introduces advances on the implementation of anomaly detection modules based on a combination of nonparametric models and multivariate analysis of residuals. The proposed anomaly detector utilizes similarity–based modeling (SBM) techniques to represent the process behavior and principal component analysis (PCA) for the study of model residuals; while partial least squares (PLS) is used to select an optimal subset of process variables to be included in the design of the detection module. In addition, the method considers a structured algorithm for the optimal inclusion of representative samples from the data set that is used to define the normal operation of the system. The method is validated using data that characterizes the operation of a compressor in a power generation plant.
How to Cite
##plugins.themes.bootstrap3.article.details##
anomaly detection, similarity-based modelling, multivariate analysis
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.