Structural Health Monitoring on Metallic Aircrafts Using Flexible and Bulk PZT Transducers: Case of Corrosion Detection and Crack Localization
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This work focus on the structural health monitoring of aircrafts parts specimen structures made of 2024 Aluminum alloys. In this paper we demonstrate the feasibility of a new non destructive control method capable to probe very large structures within a short time. The method we developed is based through a wide piezoelectric sensors network on a smart comparison between two acoustic signatures: the healthy structure response captured before the commissioning of the plane and “an after flight” response. The sensors network exploits the capability of piezoelectric patches to generate/measure specific Lamb wave’s modes. The system is therefore dynamically configured to localize mechanicals flaws using an algorithm that operates using different techniques like pitch-catch and pulse-echo.
An analytic study is performed and tests to prove the proposed method feasibility on corroded structures specimens are provided at the end of this paper.
How to Cite
##plugins.themes.bootstrap3.article.details##
corrosion, crack detection, piezoelectric sensor, SHM, PZT, lamb waves, aircraft, aluminum 2024, flexible sensor
Victor Giurgiutiu, (2004) Embedded-ultrasonics Structural Radar for In Situ Structural Health Monitoring of Thin- wall Structures, Structural Health Monitoring June 2004 vol. 3 no. 2 121-140
McIntosh, Greg, (1996) Infrared thermography monitors composite consolidation, Advanced Materials & Processes;Dec96, Vol. 150 Issue 6, p29
Dixon, S et al. (2004). Inspection of rail track head surfaces using electromagnetic acoustic transducers (EMATs). Insight - Non-Destructive Testing and Condition Monitoring, Volume 46, Number 6,
OLYMPUS, (2009). Flaw Detectors, BondMaster, http://www.olympus-ms.com/en/bondmaster1000eplus/
Victor Giurgiutiu, (2005). Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring, Journal of Intelligent
Material Systems and Structures vol. 16 no. 4 291-305
Hamza Boukabache et al, (2011) Piezoelectric wafer active sensor network for aircraft structures damage localisation: pitch-catch method. International Workshop on Structural Health Monitoring (IWSHM 2011), Stanford (USA), 13-15 Septembre 2011, pp.555-561
D. N. AlleyneetP. Cawley, (1996), The excitation of Lambwaves in pipes using dry-coupled piezoelectric transducers. , Volume 15, Number 1 (1996), 11-20, DOI: 10.1007/BF00733822
Victor Giurgiutiu, (2002) Lamb Wave Generation with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Annual International Symposium on Smart Structures and Materials and 8th Annual International Symposium on NDE for Health Monitoring and Diagnostics, 2-6 March 2002, San Diego, CA
Dustin Thomas et al, (2004) Corrosion Damage Detection with Piezoelectric wafer Active Sensors. Annual International Symposium on Smart Structures and Materials and 9th Annual International Symposium on NDE for Health Monitoring and Diagnostics, 14-18 March 2004, San Diego, CA
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.