Markov Modeling of Component Fault Growth Over A Derived Domain of Feasible Output Control Effort Modifications
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system’s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.
How to Cite
##plugins.themes.bootstrap3.article.details##
Load Allocation, Markov Modeling, Fault Growth Prognosis, Degradation of Nominal Performance
Baruah, P., & Chinnam, R. B. (2005). HMMs for diagnostics and prognostics in machining processes. International Journal of Production Research, 43(6), 1275-1293.
Bole, B., Brown, D. W., Pei, H.-L., Goebel, K., Tang, L., & Vachtsevanos, G. (2010, Oct.). Fault adaptive control of overactuated systems using prognostic estimation. In Annual conference of the prognostics and health management society.
Bole, B., Tang, L., Goebel, K., & Vachtsevanos, G. (2011). Adaptive load-allocation for prognosis-based risk management. In Annual conference of the prognostics and health management society.
Dong, M., & He, D. (2007). Hidden semi-Markov model- based methodology for multi-sensor equipment health diagnosis and prognosis. European Journal of Operational Research, 178, 858-878.
Edwards, D., Orchard, M., Tang, L., Goebel, K., & Vachtsevanos, G. (2010). Impact of input uncertainty on failure prognostic algorithms: Extending the remaining useful life of nonlinear systems. In Annual conference of the prognostics and health management society.
Guidaa, M., & Pulcini, G. (2011). A continuous-state Markov model for age- and state-dependent degradation pro- cesses. Structural Safety, 33(6), 354-366.
Hauriea, A., & Moresino, F. (2006). A stochastic control model of economic growth with environmental disaster prevention. Automatica, 42(8), 1417-1428.
Hernandez, D., & Marcus, S. (1996). Risk sensitive control of Markov processes in countable state space. Systems & Control Letters, 29, 147-155.
Orchard, M., Kacprzynski, G., Goebel, K., Saha, B., & Vachtsevanos, G. (2008). Advances in uncertainty representation and management for particle filtering applied to prognostics. In Annual conference of the prognostics and health management society.
Parlara, M., Wang, Y., & Gerchak, Y. (1995). A periodic review inventory model with Markovian supply availability. International Journal of Production Economics, 42(2), 131-136.
Ruszczyriski, A. (2009). Risk-averse dynamic programming for Markov decision processes. In 20th international symposium on mathematical programming.
Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 58(2), 291-296.
Sankararaman, S., Ling, Y., Shantz, C., & Mahadevan, S. (2009). Uncertainty quantification in fatigue damage prognosis. In Annual conference of the prognostics and health management society.
Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, M. (2008). Metrics for evaluating performance of prognostic techniques. In Annual conference of the prognostics and health management society.
Serfozo, R. F. (1979). An equivalence between continuous and discrete time Markov decision processes. Operations Research, 27, 616-620.
Shetty, P., Mylaraswamy, D., & Ekambaram, T. (2008). A hybrid prognostic model formulation and health estimation of auxiliary power units. Journal of engineering for gas turbines and power, 130(2).
Smilowitz, K., & Madanat, S. (1994). Optimal inspection and repair policies for infrastructure facilities. Trans- portation science, 28, 55-62.
Sonnenberg, F., & Beck, R. (1993). Markov models in medical decision making. Medical Decision Making, 13(4), 322-338.
Tang, L., Kacprzynski, G. J., Goebel, K., & Vachtsevanos, G. (2009). Methodologies for uncertainty management in prognostics. In IEEE aerospace conference.
Wang, H. S., & Chang, P.-C. (1996). On verifying the first-order Markovian assumption for a Rayleigh fading channel model. IEEE Transactions on Vehicular Technology, 45(2), 353-357.
Wang, P., Youn, B., & Hu, C. (2012). A generic probabilistic framework for structural health prognostic and uncertainty management. Mechanical Systems and Signal Processing, 28, 622U637.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.