Lithium-ion Battery State of Health Estimation Using Ah-V Characterization
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The battery state of health (SOH) is a measure of the battery’s ability to store and deliver electrical energy. Typical SOH methods characterize either the battery power or energy. In this paper, new SOH estimation methods are investigated based on the battery energy represented by the Ampere-hour throughput (Ah). The methods utilize characteristics of the Ah to estimate the battery capacity or the useable energy for state of health estimation. Three new methods are presented and compared. The simulation results indicate the effectiveness of the methods for state of health estimation.
How to Cite
##plugins.themes.bootstrap3.article.details##
National Science Foundation, American Society for Engineering Education, General Motors
Kim, I. (2010). A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding- Mode Observer. IEEE Transactions on Power Electronics. vol. 25 (4), pp. 1013-1022.
Kim , H., Heo, S., Kang, G. (2010). Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery. SAE 2010 World Congress & Exhibition, April 13-15, Detroit, MI.
Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany. vol. 10, pp. 290-300.
Liaw, B., Jungst R., Nagasubramanian, G., Case, H., Doughty, D. (2005). Modeling capacity fade in lithium- ion cells. Journal of Power Sources,vol. 140 (1), pp. 157-161.
Rong, P. and Pedram, M. (2006). An analytical model for predicting the remaining battery capacity of lithium-ion batteries. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14 (5), pp 441- 451.
Spotnitz, R. (2003). Simulation of capacity fade in lithiumion batteries. Journal of Power Sources, vol. 113, pp. 72-80.
Zhang, Y. Wang, C., Tang, X. (2011). Cycling degradation of an automotive LiFeP04 lithiumion battery. Journal of Power Sources. vol. 196 (3), pp. 1513-1520.
Troltzsch U., Kanoun O., Trankler H. (2006). Characterizing aging effects of lithium-ion batteries by impedance spectroscopy. Electrochimica Acta. vol. 5 (8,9), pp. 1664-1672.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.