Synthesis of a Distributed and Accurate Diagnoser
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The complex behaviour of large discrete event systems makes such systems difficult to diagnose. Using decentralised techniques helps limit combinatorial explosion but is not sufficient. Often, the complexity of the diagnosis is dependent on how components in the system are connected and the number of connections between them. We propose to augment a decentralized junction tree- based approach by ignoring some connections on the system. This helps reduce the complexity, and hence the cost, of the diagnostic reasoning required. However accuracy of the diagnosis is also reduced. We get around this problem by performing an off-line analysis to determine which connections can be safely ignored.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnosis, model-based methods, accuracy
(Cordier and Grastien, 2007) M.-O. Cordier and A. Grastien. Exploiting independence in a decentralised and incremental approach of diagnosis. In M. Veloso, editor, Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages 292–297. AAAI press, 2007.
(Huang and Darwiche, 1996) C. Huang and A. Dar- wiche. Inference in belief networks: A procedural guide. International Journal of Approximate Reasoning, 15(3):225–263, 1996.
(Kan John and Grastien, 2008) P. Kan John and A. Grastien. Local consistency and junction tree for diagnosis of discrete-event systems. In European Conference on Artificial Intelligence (ECAI-08), 2008.
(Pencole ́ and Cordier, 2005) Y. Pencole ́ and M.-O. Cordier. A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks. Artificial Intelligence (AIJ), 164:121–170, 2005.
(Pencole ́ et al., 2006) Y. Pencole ́, D. Kamenetsky, and A. Schumann. Towards low-cost fault diagnosis in large component-based systems. In Sixth IFAC Symposium on Fault Detection, Supervision and Safety of Technical PRocess, 2006.
(Sachenbacher and Struss, 2005) M. Sachenbacher and P. Struss. Task-dependent qualitative domain abstraction. Artificial Intelligence (AIJ), 162(1–2):121–143, 2005.
(Schumann et al., 2004) A. Schumann, Y. Pencole ́, and S. Thie ́baux. Symbolic models for diagnosing discrete-event systems. In Sixteenth European Conference on Artificial Intelligence (ECAI’04), 2004.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.