References
Antoni, J., & Randall, R. (2006). The spectral kurtosis: a useful tool for characterising non-stationary sig- nals. Mechanical Systems and Signal Processing, 20, 282-307.
Bartelmus, W., & Zimroz, R. (2009). A new feature for monitoring the condition of gearboxes in non– stationary operating conditions. Mechanical Sys- tems and Signal Processing, 23(5), 15281534.
Baydar, N., & Ball, A. (2000). Detection of Gear dete- rioration under variying load conditions using the Instantaneous Power Spectrum. Mechanical Sys- tems and Signal Processing, 14(6), 907–921.
Blanco, S., Figliola, A., Quiroga, R. Q., Rosso, O. A., & Serrano, E. (1998). Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function. Phys. Rev. E, 57(1), 932–940.
Burrus, C. S., Gopinath, R. A., & Guo, H. (1994). In- troduction to Wavelets and Wavelet Transforms: A Primer. New Jersey: Prentice Hall.
Dwyer, R. (1983). Detection of non-Gaussian signals by frequency domain Kurtosis estimation. Acous- tics, Speech, and Signal Processing, IEEE Inter- national Conference on ICASSP, 8, 607-610.
Feng, Y., & Schlindwein, F. S. (2009). Normalized wavelet packets quantifiers for condition monitor- ing. Mechanical Systems and Signal Processing, 23(3), 712–723.
Figliola, A., & Serrano, E. (1997). Analysis of Physiological Time Series Using Wavelet Trans- forms. IEEE Engineering in Medicine and Biol- ogy, 16(3), 74–79.
Howard, I., Jia, S., & Wang, J. (2001). The dynamic modelling of a spur gear in mesh including fric- tion and crack. Mechanical Systems and Signal Processing, 15, 831-853.
Kuang, J.-H., & Li, A.-D. (2003). Theoretical aspects of torque responses in spur gearing due to mesh stiffness variation. Mechanical Systems and Signal Processing, 17, 255-271.
Mallat, S. (1999). A wavelet tour of signal processing, Second edition. San Diego: Academic Press. Parker, B. E., Ware, H. A., Wipf, D. P., Tompkins, W. R.,
Clark, B. R., & Larson, E. C. (2000). Fault Diag- nosis using Statistical change detection in the Bis- pectral Domains. Mechanical Systems and Signal Processing, 14(4), 561–570.
Percival, D. B., & Walden, A. T. (2000). Wavelet Meth- ods for Time Series Analysis. Cambridge: Cam- bridge University Press.
PHM. (2009). Prognostics and Health Man- agment Society 2009 Data Challenge. http://www.phmsociety.org/competition/09.
Priestley, M., & Gabr, M. (1993). Multivariate Analysis: Future Directions. In C. Rao (Ed.), (Vol. 5, pp. 295–317). Amsterdam: North–Holland, Elsevier.
Randall, R. B., Antoni, J., & Chobsaard, S. (2001). The relationship between spectral correlation and en- velope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Me- chanical Systems and Signal Processing, 15, 945 - 962.
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figli- ola, A., Schu ̈rmann, M., et al. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65–75.
Spanos, P. D., & Failla, G. (2004). Evolutionary Spectra Estimation Using Wavelets. Journal of Engineer- ing Mechanics, 130(8), 952–960.
Stander, C., & Heyns, P. (2005). Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions. Mechanical Systems and Signal Processing, 19(4), 817-835.
Wang, W. (2001). Early Detection of gear tooth cracking using the resonance demodulation technique. Me- chanical Systems and Signal Processing, 15, 887- 903.
Zhan, Y., Makis, V., & Jardine, A. K. (2006). Adaptive state detection of gearboxes under varying load conditions based on parametric modelling. Me- chanical Systems and Signal Processing, 20(1), 188–221.
Zunino,L.,Pe ́rez,D.,Garavaglia,M.,&Rosso,O. (2007). Wavelet entropy of stochastic processes. Physica A: Statistical Mechanics and its Applica- tions, 379(2), 503–512.