Health prognosis based on a novel approach for damage accumulation calculation
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Core aspects of diagnosis and prognosis are based on the knowledge of the actual state-of-damage. Every mechanical system damage increases due to applied stresses. This contribution focuses on systems being affected by mechanical loads, leading to failure if a certain damage level is exceeded. According to the literature, mathematical models are known that describe qualitatively the damage progression based on experimental data. Hence, those models are valid for certain systems under certain operating conditions and depend on the underlying experimental data.
The intention of this contribution is to calculate with a general model the damage progression for different load histories, independent from specific load collective-based experiments. One novel aspect is to conclude from failures of individuals of a considered set of systems used with individual load profiles to the underlying, problem/application-specific damage accumulation relation. This is done by a nonlinear mathematical model, calculating the caused damage due to the applied stress. Costly and/or safety relevant systems are not subject of this investigation but mechanical (e.g., friction, wear, etc.) systems.
How to Cite
##plugins.themes.bootstrap3.article.details##
damage propagation model
(Hwang and Han, 1986) W. Hwang and K. S. Han. Cumulative damage models and multi-stress fatigue life prediction. Composite Materials, 20:125–153, 1986.
(Marco and Starkey, 1954) S. M. Marco and W. L. Starkey. A concept of fatigue damage. Transac of the ASME, 76:626–662, 1954.
(Miner, 1945) M. A. Miner. Cumulative damage in fatigue. Applied Mechanics, 12:159–164, 1945.
(Nelles, 2001) O. Nelles. Nonlinear System Identifi- cation. Springer, Berlin, 2001.
(Palmgren, 1924) A. Palmgren. Die Lebensdauer von Kugellagern. VDI-Z, 68:339–341, 1924.
(Wo ̈hler, 1870) A: Wo ̈hler. U ̈ ber die Festigkeitsver- suche mit Eisen und Stahl. Zeitschrift fu ̈r Bauwe- sen, 20:73–106, 1870.
(Wolters, 2008) K. Wolters. Formalisms, simulation, and potentials of a dependability concept for optimized system utilization [in German]. Dr.-Ing. thesis, Chair of Dynamics and Control (SRS), Engineering Faculty, University of Duisburg-Essen, Duisburg, Germany, May 2008.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.