Cross-Turbine Training of Convolutional Neural Networks for SCADA-Based Fault Detection in Wind Turbines
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Machine learning algorithms for early fault detection of wind turbines using 10-minute SCADA data are attracting attention in the wind energy community due to their cost-effectiveness. It has been recently shown that convolutional neural networks (CNNs) can significantly improve the performance of such algorithms. One practical aspect in the deployment of these algorithms is that they require a large amount of historical SCADA data for training. These are not always available, for example in the case of newly installed turbines. Here we suggest a cross-turbine training scheme for CNNs: we train a CNN model on a turbine with abundant data and use the trained network to detect faults in a different wind turbine for which only little data are available. We show that this scheme is able to detect faults with an accuracy and robustness which are very similar to the single-turbine scheme, in which training and detection are both done on the same turbine. We demonstrate this for two different fault types: abrupt and slowly evolving faults and perform a sensitivity analysis in order to compare the performance of the two training schemes. We show that the scheme works successfully also when training on turbines from another farm and with different measured variables than the target turbine.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault Detection, Convolutional Neural Networks, Transfer Learning, Wind Turbines, SCADA data.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.