Domain Adaptation for Structural Health Monitoring
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In recent years, machine learning (ML) algorithms gained a lot of interest within structural health monitoring (SHM) community. Many of those approaches assume the training and test data come from similar distributions. However, real-world applications, where an ML model is trained on numerical simulation data and tested on experimental data, are deemed to fail in detecting the damage, as both domain data are collected under different conditions and they don’t share the same underlying features. This paper proposes the domain adaptation approach as a solution to particular SHM problems where the classifier has access to the labeled training (source) and unlabeled test (target) domains. The proposed domain adaptation method forms a feature space to match the latent features of both source and target domains. To evaluate the performance of this approach, we present a case study where we train three neural network-based classifiers on a three-story test structure: i) Classifier A uses labeled simulation data from the numerical model of the test structure; ii) Classifier B utilizes labeled experimental data from the test structure; and iii) Classifier C implements domain adaptation by training on labeled simulation data (source) and unlabeled experimental data (target). The performance of each classifier is evaluated by computing the accuracy of the discrimination against labeled experimental data. Overall, the results demonstrate that domain adaption can be regarded as a valid approach for SHM applications where access to labeled experimental data is limited.
How to Cite
##plugins.themes.bootstrap3.article.details##
domain adaptation, neural network, structural health monitoring
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.