A Novel Orbit-based CNN Model for Automatic Fault Identification of Rotating Machines
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Various faults in high-fidelity turbomachinery such as steam turbines and centrifugal compressors usually result in unplanned outage thus lowering the reliability and productivity while largely increasing the maintenance costs. Condition monitoring has been increasingly applied to provide early alerting on component faults by using the vibration signals. However, each type of fault in different types of rotating machines usually require an individual model to isolate the damage for accurate condition monitoring, which require costly computation efforts and resources due to the data uncertainties and modeling complexity. This paper presents a generalized deep learning methodology for accurately automatic diagnostics of various faults in general rotating machines by utilizing the shaft orbits generated from vibration signals, considering the high non-linearity and uncertainty of the sensed vibration signals. The sensor anomalies and environmental noise in the vibration signals are first addressed through waveform compensation and Bayesian wavelet noise reduction filtering. Shaft orbit images are generated from the cleansed vibration data collected from different turbomachinery with various fault modes. A multi-layer convolutional neural network model is then developed to classify and identify the shaft orbit images of each fault. Finally, the fault diagnosis of rotating machinery is realized through the automated identification process. The proposed approach retains the fault information in the axis trajectory to the greatest extent, and can adeptly extract and accurately identify features of various faults. The effectiveness and feasibility of the proposed methodology is demonstrated by using the sensed vibration signals collected from real-world centrifugal compressors and steam turbines with different fault modes.
How to Cite
##plugins.themes.bootstrap3.article.details##
Bayesian wavelet denoising, convolutional neural network, fault identification, shaft orbits, turbomachinery
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.