Deep Stack Dictionary learning for Fault Diagnosis of Rotating Machinery
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Published
Jul 14, 2017
Jinyang Jiao
Ming Zhao
Jing Lin
Abstract
Effective feature extraction of rotating machinery has been a hot topic in the prognosis and health management. However, it is a challenging problem to extract periodic impulses under heavy background noise and other interference. In the last decade, deep learning and dictionary learning have been promising methods to extract feature information, which have made great achievement in the field of image, video denoising, etc. In this paper, via fusing the deep learning with dictionary learning, an algorithm called deep stack dictionary learning is proposed. This algorithm is trained in a layer-wise greedy manner so as to suppress the noise and highlight periodic impulses.
##plugins.themes.bootstrap3.article.details##
Keywords
PHM
References
Lei, Y., Lin, J., He, Z., & Zi, Y. (2011). Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, vol. 25, pp. 1738-1749. doi:10.1016/j.ymssp.2010.12.011
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in neural information processing systems, vol. 19.
Aharon, M., Elad, M., & Bruckstein, A. (2006). $ rm k $- SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing, vol. 54, pp. 4311- 4322 doi:10.1109/TSP.2006.881199
Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, vol. 53, pp. 4655-4666. doi:10.1109/TIT.2007.909108
Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Cs Technion, vol. 40, pp. 1-15.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, vol. 313, pp. 504-507. doi: 10.1126/science.1127647
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. InProceedings of the 25th international conference on Machine learning. July 5-9. ACM. doi:10.1145/1390156.1390294
Tariyal, S., Majumdar, A., Singh, R., & Vatsa, M. (2016). Deep Dictionary Learning. IEEE Access, vol. 4, pp. 10096-10109. doi:10.1109/ACCESS.2016.2611583
Singhal, V., & Majumdar, A. (2017). Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning. Neural Processing Letters, pp. 1-16. doi:10.1007/s11063-017-9603-9
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in neural information processing systems, vol. 19.
Aharon, M., Elad, M., & Bruckstein, A. (2006). $ rm k $- SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing, vol. 54, pp. 4311- 4322 doi:10.1109/TSP.2006.881199
Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, vol. 53, pp. 4655-4666. doi:10.1109/TIT.2007.909108
Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Cs Technion, vol. 40, pp. 1-15.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, vol. 313, pp. 504-507. doi: 10.1126/science.1127647
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. InProceedings of the 25th international conference on Machine learning. July 5-9. ACM. doi:10.1145/1390156.1390294
Tariyal, S., Majumdar, A., Singh, R., & Vatsa, M. (2016). Deep Dictionary Learning. IEEE Access, vol. 4, pp. 10096-10109. doi:10.1109/ACCESS.2016.2611583
Singhal, V., & Majumdar, A. (2017). Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning. Neural Processing Letters, pp. 1-16. doi:10.1007/s11063-017-9603-9
Section
Regular Session Papers