Exploring Proactive Maintenance through Fault Detection Techniques for Rotating Machinery A Systematic Review
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Rotating machinery plays a crucial role in industrial production, where reliability and efficiency are essential for minimizing downtime and operational losses. This systematic review explores proactive maintenance through advanced failure detection techniques, assessing their effectiveness in optimizing maintenance strategies. The study identifies key fault detection methods, including vibration analysis, electrical signature analysis, thermal imaging, acoustic emission monitoring, oil analysis, and IoT-enabled real-time monitoring. While vibration analysis remains the most widely researched and applied method, emerging AI-driven predictive maintenance models and IoT-based real-time diagnostics are increasingly transforming industrial maintenance practices. Findings indicate that proactive maintenance enhances equipment reliability, reduces downtime, and improves safety. However, significant challenges hinder widespread adoption, including high implementation costs, data management complexities, and the need for specialized expertise. Additionally, research gaps persist in comparative evaluations of fault detection methods, cost-benefit analyses, and the standardization of key performance metrics for proactive maintenance effectiveness. The study emphasizes the need for integrating multiple fault detection techniques to improve accuracy and reliability.
##plugins.themes.bootstrap3.article.details##
Rotating machinery, fault detection, systematic review, proactive maintenance
Adeyemi, O. G., & Salawu, A. (2023). Condition-based maintenance of rotary equipment in oil processing facilities: Nigerian case study. Oil and Gas Research, 9(1), 35–42. doi:10.4172/2472-0518.100023
Akinyemi, O. O., & Balogun, M. (2024). Cost-benefit analysis of predictive maintenance in oil and gas rotating machines. Engineering Management Journal, 36(1), 25–35. doi:10.1080/10429247.2023.2187123
Alshorman, O., et al. (2020). Advancements in condition monitoring and fault diagnosis of rotating machinery: A comprehensive review of image-based intelligent techniques for induction motors. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1–5). IEEE. doi:10.1109/ICDABI51230.2020.9325635
Aluko, R. A., & Adebayo, S. (2022). Vibration-based condition monitoring for offshore rotating machinery. Nigerian Journal of Offshore and Subsea Engineering, 4(2), 33–40. doi:10.4314/njose.v4i2.4
Azeez, A. A., Alkhedher, M., Gadala, M. S., & Mohamad, O. A. (2020). Fault detection of rolling element bearings using advanced signal processing techniques. 2020 Advances in Science and Engineering Technology International Conferences (ASET), 1–6. doi:10.1109/ASET48392.2020.9118398
Bagri, I., Tahiry, K., Hraiba, A., Touil, A., & Mousrij, A. (2024). Vibration signal analysis for intelligent rotating machinery diagnosis and prognosis: A comprehensive systematic literature review. Vibration, 7(4), 1013–1062. doi:10.3390/vibration7040054
Bai, T., Zhang, L., Duan, L., & Wang, J. (2016). NSCT-based infrared image enhancement method for rotating machinery fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 65(10), 2293–2301. doi:10.1109/TIM.2016.2579440
Balogun, V. A., Adeleye, A. A., & Ayoola, O. I. (2021). Predictive maintenance of rotating machinery in oil and gas industry using machine learning: A review. African Journal of Science, Technology, Innovation and Development, 13(6), 755–765. doi:10.1080/20421338.2020.1763200
Bamidele, O. A., & Ojo, S. I. (2022). Root cause analysis of rotary equipment failure in oil production. International Journal of Mechanical Engineering and Applications, 10(3), 48–55. doi:10.11648/j.ijmea.20221003.12
Bello, Y. A., & Musa, S. (2023). Integration of Industry 4.0 in the maintenance of rotating equipment in Nigeria. Journal of Manufacturing Technology Research, 15(2), 133–146. doi:10.1504/JMTR.2023.127093
Cablea, G., Granjon, P., & Bérenguer, C. (2017). Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems. Mechanical Systems and Signal Processing, 92, 278–292. doi:10.1016/j.ymssp.2017.01.030
Chacon, J. L. (2015). Fault detection in rotating machinery using acoustic emission [Doctoral dissertation, Brunel University London]. doi:10.13140/RG.2.1.2369.5444
Chen, X., & Feng, Z. (2023). New schemes of induction motor electric signature analysis for gear fault diagnosis: A comparative study. IEEE Transactions on Power Electronics, 39(3), 3590–3600. doi:10.1109/TPEL.2023.3341798
Chen, Y., et al. (2025). Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions. Reliability Engineering & System Safety, 254(A), 110596. doi:10.1016/j.ress.2024.110596
Chukwuma, O. E., & Babalola, A. A. (2024). Digital transformation in maintenance practices: Rotating machinery in oil and gas. Procedia Manufacturing, 67, 910–918. doi:10.1016/j.promfg.2024.03.091
Da Costa, C., Mathias, M. H., & Kashiwagi, M. (2012). Development of an instrumentation system embedded on FPGA for real-time measurement of mechanical vibrations in rotating machinery. 2012 IEEE International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), 1, 60–64.
Daniel, I. D., & Johnson, U. (2023). Condition monitoring and fault diagnosis of rotating equipment in Nigerian oil and gas facilities: A review. Journal of Engineering and Applied Sciences, 18(3), 57–68. doi:10.3923/jeasci.2023.57.68
Das, O., Bagci, D. D., & Birant, D. (2023). Machine learning for fault analysis in rotating machinery: A comprehensive review. Heliyon, 9(6), e17584. doi:10.1016/j.heliyon.2023.e17584
Duan, L., Yao, M., Wang, J., Bai, T., & Zhang, L. (2016). Segmented infrared image analysis for rotating machinery fault diagnosis. Infrared Physics & Technology, 77, 267–276. doi:10.1016/j.infrared.2016.06.011
Eboh, C. A., & Onuoha, M. N. (2024). The role of data analytics in improving rotating machinery uptime in Nigeria. African Journal of Engineering Research, 12(1), 10–20. doi:10.5897/AJER.2024.1076
El Mahdi, B., Ali, E. K., Youssra, E. K., & Soufiane, E. (2022). Real-time assessment of novel predictive maintenance system based on artificial intelligence for rotating machines. Journal of European Systems Automation, 55(6), 817–823. doi:10.18280/jesa.550614
Emagbetere, E., Uwatse, S., & Okoidigun, O. G. (2025). Artificial neural network for the clustering of vibration signals for condition monitoring of rotating machines. ABUAD Journal of Engineering Research and Development, 8(1), 1–13. doi:10.53982/ajerd.2025.0801.01-j
Erhueh, O. V., Nwakile, C., Akano, O. A., Aderamo, A. T., & Hanson, E. (2024). Advanced maintenance strategies for energy infrastructure: Lessons for optimizing rotating machinery. Global Journal of Research in Science and Technology, 2(2), 65–93. doi:10.58175/gjrst.2024.2.2.0073
Gawde, S., Patil, S., Kumar, S., Kamat, P., Kotecha, K., & Abraham, A. (2023). Multi-fault diagnosis of industrial rotating machines using data-driven approach: A review of two decades of research. Engineering Applications in Artificial Intelligence, 123, 106–139. doi:10.1016/j.dajour.2024.100425
Ghazali, M. H. M., & Rahiman, W. (2021). Vibration analysis for machine monitoring and diagnosis: A systematic review. Shock and Vibration, 2021, 9469318. doi:10.1155/2021/9469318
Glowacz, A., & Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics & Technology, 81, 7–16. doi:10.1016/j.infrared.2016.12.003
Grebenik, J., Zhang, Y., Bingham, C., & Srivastava, S. (2016). Roller element bearing acoustic fault detection using smartphone and consumer microphones: Comparing with vibration techniques. 2016 17th International Conference on Mechatronics - Mechatronika (ME), 1–7.
Hassan, I. A., & Obasi, E. (2023). Maintenance optimization of rotary machinery through performance-based metrics. Journal of Industrial Engineering and Management, 16(4), 802–814. doi:10.3926/jiem.4487
Hassan, M. H., Mohammed, H. A., & Hameed, B. A. (2022). A review on fault diagnosis methods for rotating machinery. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 437–445. doi:10.11591/ijeecs.v25.i1.pp437-445
He, J., Yang, S., & Gan, C. (2017). Unsupervised fault diagnosis of a gear transmission chain using a deep belief network. Sensors, 17(7), 1564. doi:10.3390/s17071564
Ifediora, C. O., & Nnaji, C. (2022). Challenges of implementing predictive maintenance in oil and gas sector: Nigeria’s experience. Journal of Maintenance Engineering, 9(2), 95–105. doi: 10.1016/j.jmainteng.2022.09.005
Igwe, K. U., & Amadi, C. O. (2022). Trends and challenges in rotary equipment maintenance in Nigerian oil industry. International Journal of Oil, Gas and Coal Engineering, 10(5), 87–93. doi:10.11648/j.ogce.20221005.11
Isham, M. F. B., Kamal, M. H. M., Raheimi, A., Saufi, M. S. R. M., Lim, M. H., Leong, M. S., et al. (2025). Rotating machinery reliability assessment based on improved extreme learning machine and hippopotamus optimization algorithm. Advances in Science and Technology Research Journal, 19(2), 82–94. doi:10.12913/22998624/195928
Islam, M. M., Kim, H., & Kim, J. M. (2023). Intelligent fault diagnosis and health monitoring techniques for rotating machinery: A review. Sensors, 23(5), 2551. doi:10.3390/s23052551
Islam, S. M. N., Rashik, F., & Basher, K. (2021). Oil debris analysis and vibration monitoring system for condition monitoring and fault diagnosis of a gearbox. International Advanced Research Journal in Science, Engineering and Technology, 8(9), 132–139. doi:10.17148/IARJSET.2021.8922
Janssens, O., et al. (2015). Thermal image-based fault diagnosis for rotating machinery. Infrared Physics & Technology, 73, 78–87. doi:10.1016/j.infrared.2015.09.004
Javed, M. R., et al. (2022). An efficient fault detection method for induction motors using thermal imaging and machine vision. Sustainability, 14(15), 9060. doi:10.3390/su14159060
Kala, S. P., Palanivel, R., Singh, M. P., Arulkumaran, G., & Shnain, A. H. (2024). Infrared thermography-based induction motor bearing fault detection using hybrid method. 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), 1–4. doi:10.1109/ICDCECE60827.2024.10548847
Kang, J., Luo, Y., Wang, P., Wei, Y., & Zhou, Y. (2023). Fault diagnosis of rotating machinery under complex conditions based on multi-scale convolutional neural networks. Journal of Physics: Conference Series, 2658(1), 012038. doi:10.1088/1742-6596/2658/1/012038
Khalil, A. F., & Rostam, S. (2024). Machine learning-based predictive maintenance for fault detection in rotating machinery: A case study. Engineering Technology and Applied Science Research, 4(2), 13181–13189. doi:10.48084/etasr.6813
Khan, M. A., Asad, B., Kudelina, K., Vaimann, T., & Kallaste, A. (2023). The bearing faults detection methods for electrical machines: The state of the art. Energies, 16(1), 296. doi:10.3390/en16010296
Kiranyaz, S., et al. (2024). Exploring sound versus vibration for robust fault detection on rotating machinery. IEEE Sensors Journal, 24(14), 23255–23264. doi:10.1109/JSEN.2024.3405889
Kolar, D., Lisjak, D., Pająk, M., & Gudlin, M. (2021). Intelligent fault diagnosis of rotary machinery by convolutional neural network with automatic hyper-parameters tuning using Bayesian optimization. Sensors. doi:10.3390/s21072411
Kramti, S. E., et al. (2021). Toward an online strategy for mechanical failures diagnostics inside the wind turbine generators based on spectral analysis. Wind Engineering, 45(4), 782–792. doi: 10.1177/0309524X211028759
Kumar, A., Gandhi, C. P., Tang, H., Sun, W., & Xiang, J. (2023). Latest innovations in the field of condition-based maintenance of rotary machinery: A review. Measurement Science and Technology, 35(2), 022003. doi:10.1088/1361-6501/ad0f67
Kumar, R., & Anand, R. S. (2024). Health monitoring and fault analysis of induction motors: A review. Engineering Research Express, 6, 042403. doi:10.1088/2631-8695/ad8b10
Kumar, S., Raj, K. K., Cirrincione, M., Cirrincione, G., Franzitta, V., & Kumar, R. R. (2024). A comprehensive review of remaining useful life estimation approaches for rotating machinery. Energies, 17(22), 5538. doi:10.3390/en17225538
Lee, J., & Su, H. (2025). Rethinking industrial artificial intelligence: A unified foundation framework. ArXiv. doi:10.36922/IJAMD025080006
Li, Y., Zhou, Z., Sun, C., Chen, X., & Yan, R. (2024). Variational attention-based interpretable transformer network for rotary machine fault diagnosis. IEEE Transactions on Neural Networks and Learning Systems, 33(5), 6180–6193. doi:10.1109/TNNLS.2022.3202234
Mueller, P. N., Woelfl, L., & Can, S. (2023). Bridging the gap between AI and the industry—A study on bearing fault detection in PMSM-driven systems using CNN and inverter measurement. Engineering Applications of Artificial Intelligence, 126, 106834. doi:10.1016/j.engappai.2023.10683
Muthanandan, S., & Nor, K. A. (2019). Condition monitoring and assessment for rotating machinery. In S. Sulaiman (Ed.), Rotating Machineries: Aspects of Operation and Maintenance (pp. 1–13). Springer. doi:10.1007/978-981-13-2357-7_1
Nayak, N., Mohapatra, A. G., Khanna, A., Talukdar, J., Satapathy, S., Nayak, D. R., et al. (2024). Enhancing fault detection and predictive maintenance of rotating machinery with Fiber Bragg Grating sensor and machine learning techniques. International Journal of Information Technology, 17, 1225–1234. doi:10.1007/s41870-024-02256-4
Noman, K., Wang, S., Feng, K., Li, Y., & Xinyue, W. (2024). Weighted squared envelope dispersion entropy as nonlinear measure for dynamic health monitoring of rotating machineries. NDT & E International, 147, 103207. doi:10.1016/j.ndteint.2024.103207
Nweke, C. C., & Ome, P. U. (2021). A review of condition-based maintenance strategies for rotary machinery in Nigeria’s oil and gas industry. Nigerian Journal of Technology, 40(2), 231–240. doi:10.4314/njt.v40i2.17
Ogundipe, O. M., & Eze, E. C. (2023). Predictive maintenance implementation for offshore rotating machines: Case of Nigeria’s marginal fields. Ocean Engineering, 284, 116424. doi: 10.1016/j.oceaneng.2023.116424
Ogunleye, O. O., & Alabi, D. (2023). Application of AI techniques in predictive maintenance of rotating equipment: A Nigerian oil and gas industry perspective. AI & Society, 38(4), 1257–1269. doi:10.1007/s00146-023-01590
Okafor, F. C., & Awoyemi, A. O. (2023). Reliability-centered maintenance practices for rotating equipment: A case study of Nigerian oil firms. International Journal of Engineering Business Management, 15, 1–10. doi:10.1177/18479790231102149
Okereke, I. F., & Nwachukwu, F. C. (2023). Digital twin for rotating equipment reliability in Nigerian oil fields. Engineering Applications of Artificial Intelligence, 122, 105639. doi:10.1016/j.engappai.2023.105639
Okirie, A. J., Barnabas, M., & Obinichi, N. (2024). Comparative study of sensor-generated operational data, equational calculation, and temporal data acquisition for optimal predictive maintenance decisions. Global Journal of Engineering and Technology Advances, 20(2), 61–73. doi:10.30574/gjeta.2024.20.2.0143
Okirie, A. J., Barnabas, M., Ejomarie, E., & Asomie, S. (2024). Understanding deviations from original equipment manufacturers’ maintenance recommendations: Reasons, barriers, and benefits. Journal of Engineering and Applied Science, 71(219), 1–21. doi:10.1186/s44147-024-00563-y
Okirie, A. J., Saturday, E. G., Gift, M. I., & Ewe, D. (2025). Impact analysis of field maintenance practices on reliability metrics. Maintenance, Reliability, and Condition Monitoring, 5(1), 1–24. doi:10.21595/marc.2024.24585
Oyetunji, T. O., & Okon, E. E. (2021). Maintenance strategy selection for rotating machines in oil production platforms. International Journal of Industrial and Systems Engineering, 39(2), 209–227. doi:10.1504/IJISE.2021.113443
Parthiban, R., Madhumitha, G., Sowmiya, P. R., & Shastika, M. (2024). Proactive fault detection in rotating machinery using machine learning – A survey. Journal of Electrical Engineering and Automation, 6(1), 19–31. doi:10.36548/jeea.2024.1.002
Qian, G., & Liu, J. (2022). A comparative study of deep learning-based fault diagnosis methods for rotating machines in nuclear power plants. Progress in Nuclear Energy, 152, 104401. doi:10.1016/j.pnucene.2022.104401
Radonjic, M., Vujnovic, S., Krstic, A., & Zecevic, Z. (2022). IoT system for detecting the condition of rotating machines based on acoustic signals. Applied Sciences, 12(9), 4385. doi: 10.3390/app12094385
Ramadhan, A. H., Mohammed, H. A., & Hameed, B. A. (2024). Preventive maintenance scheduling of rotating machines. Indonesian Journal of Electrical Engineering and Computer Science, 33(2), 1094–1103. doi:10.11591/ijeecs.v33.i2.pp1094-1103
Ratnam, C., Jasmin, N. M., Rao, V. V., & Rao, K. V. (2018). A comparative experimental study on fault diagnosis of rolling element bearing using acoustic emission and soft computing techniques. Tribology in Industry, 40(3), 501. doi: 10.24874/ti.2018.40.03.15
Salazar-Villanueva, F., & Ibarra-Manzano, O. G. (2013). Spectral analysis for identifying faults in induction motors by means of sound. 2013 23rd International Conference on Electronics, Communications and Computing (CONIELECOMP), 149–153. doi:10.1109/CONIELECOMP.2013.6525776
Salgueiro, J., Peršin, G., Vižintin, J., Ivanovic, M., & Dolenc, B. (2013). On-line oil monitoring and diagnosis. Strojniški Vestnik - Journal of Mechanical Engineering, 59(10), 604–612.
Salomon, C. P., et al. (2019). A study of fault diagnosis based on electrical signature analysis for synchronous generators predictive maintenance in bulk electric systems. Energies, 12(8), 1506. doi:10.3390/en12081506
Sameh, M., Tarek, A., & Yassine, K. (2020). Bearing and rotor faults detection and diagnosis of induction motors using statistical neural networks. 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 77–81. doi:10.1109/STA50679.2020.9329334
Sarma, N., Tuohy, P. M., & Djurovic, S. (2022). Condition monitoring of rotating electrical machines. In Encyclopedia of Electrical and Electronic Engineering (pp. 143–154). Elsevier. doi:10.1016/B978-0-12-821204-2.00136-7
Shrivastava, A., & Wadhwani, S. (2014). An approach for fault detection and diagnosis of rotating electrical machine using vibration signal analysis. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), 1–6.
Shubita, R. R., Alsadeh, A. S., & Khater, I. M. (2023). Fault detection in rotating machinery based on sound signal using edge machine learning. IEEE Access, 99, 1–1. doi:10.1109/ACCESS.2023.3237074
Solarin, A., & Oketokun, F. (2024). Machine learning-based predictive maintenance for industrial rotating machines. International Journal of Engineering Research in Africa, 62, 98–115. doi: 10.4028/p-keg90b
Song, S., Ko, T. K., Choi, Y., & Lee, S. (2019). A novel fault diagnosis method for high-temperature superconducting field coil of superconducting rotating machine. Applied Sciences, 10(1), 223. https://api.semanticscholar.org/CorpusID:212811681
Su, H., & Lee, J. (2024). Machine learning approaches for diagnostics and prognostics of industrial systems using open source data from PHM data challenges: a review, International Journal of Prognostic and Health Management. 15(2). doi:10.36001/ijphm.2024.v15i2.3993
Sun, B., Sheng, Z., Song, P., Sun, H., Wang, F., Sun, X., et al. (2025). State-of-the-art detection and diagnosis methods for rolling bearing defects: A comprehensive review. Applied Sciences, 15(2), 1001. doi:10.3390/app15021001
Virginia, E. O., Obada, O. R., Oke, B. O., & Oluwaseun, I. (2025). Leveraging machine learning and data analytics for equipment reliability in oil and gas using predictive maintenance. World Journal of Advanced Research and Reviews, 20, 1–9. doi:10.30574/wjarr.2025.25.1.0295
Wang, Y., Zhou, J., Zheng, L., & Gogu, C. (2022). An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies. Journal of Intelligent Manufacturing, 33(4), 809–830. doi:10.1007/s10845-020-01671-1
Yazdi, M. (2024). Maintenance strategies and optimization techniques. In Advances in computational mathematics for industrial system reliability and maintainability (pp. 43–58). Springer Nature. doi:10.1007/978-3-031-53514-7
Yousuf, M., Alsuwian, T., Amin, A. A., Fareed, S., & Hamza, M. (2024). IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. Measurement and Control, 57(8). doi:10.1177/00202940241231473
Yusuf, A. A., & Bello, S. (2023). Application of predictive analytics to reduce downtime in rotating equipment. Journal of Engineering Science and Technology Review, 16(4), 120–128. doi: 10.25103/jestr.164.17
Zhang, H., et al. (2024). Condition monitoring and fault diagnosis of rotating machinery towards intelligent manufacturing: Review and prospect. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 49(1), 1–34. doi:10.1080/03081070500065726
Zhang, X., Yang, G., Cui, Y., Wei, X., & Qiao, W. (2023). Application of computer algorithm in fault diagnosis system of rotating machinery. In International Conference on Frontier Computing (pp. 103–108). Singapore: Springer.
Zhou, Q., Yi, C., Yan, L., Huang, C., & Lin, J. (2022). A blind deconvolution approach based on spectral harmonics-to-noise ratio for rotating machinery condition monitoring. IEEE Transactions on Automation Science and Engineering, 20(2), 1092–1107. doi:10.1109/TASE.2022.3179457