Self-Adaptive Air-path Health Management for a Heavy Duty-Diesel Engine

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Feb 13, 2023
Tomas Poloni Paul Dickinson Jianrui Zhang Peng Zhou

Abstract

This paper presents the air-path health management strategy with the ability to estimate the mass-flows and mitigate (adapt to) the air-path faults in the exhaust system of a heavy-duty diesel combustion engine equipped with a twin-scroll turbine. Based on the engine component models applied in the quasi-steady-state mass-balancing approach, two main engine mass-flow quantities are estimated: the Air mass-flow (AMF) and the Exhaust gas recirculation (EGR) mass-flow. The health management system is monitoring for three kinds of air-path faults that can occur through the combustion engine operation, related either to the after-treatment system, EGR valve, or to the turbine balance valve hardware. For each fault, a fault-mitigation strategy based on in-observer-reconfigurable mass-balance equations with excluded faulty component model and utilized exhaust pressure sensor is proposed. The applied observer is using the iterated Kalman filter (IKF) as the core fault mitigating solver for the quasi-steady-state mass-balancing problem. It is further demonstrated how the individual faults are robustly isolated using the Sequential Probability Ratio Test (SPRT). The strategy and results are validated using the test cycle driving data.

Abstract 378 | PDF Downloads 279

##plugins.themes.bootstrap3.article.details##

Keywords

Heavy duty, combustion engine, health managment, air path, observer

References
Ahmed Ali, S., Guermouche, M., & Langlois, N. (2015). Fault-tolerant control based super-twisting algorithm for the diesel engine air path subject to loss-ofeffectiveness and additive actuator faults. Applied Mathematical Modelling, 39(15), 4309-4329. doi: https://doi.org/10.1016/j.apm.2014.12.047
Amin, A. A., & ul Hasan, K. M. (2019). Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy. Measurement and Control, 52(5-6), 473-492. doi: 10.1177/0020294019842593
Baramov, L., Pekar, J., Dickinson, P., & Polóni, T. (2021, May). Engine mass flow observer with fault mitigation. (US Patent Application No. 17/327,066)
Basseville, M., & Nikiforov, I. V. (1998). Detection of abrupt changes: Theory and application. Retrieved from https://people.irisa.fr/Michele.Basseville/kniga/
Chen, J., & Patton, R. (1999). Robust model-based fault diagnosis for dynamic systems. Springer, Boston, MA.
Dahl, J., Wassén, H., Idelchi, A., Baramov, L., Pachner, D., Šantin, O., . . . Lánský, L. (2018). Real-time EGR and air flows estimation for heavy-duty engine. In Symposium for combustion control (pp. 1–8). Aachen, Germany: RWTH Aachen University.
Gutiérrez León, P., García-Morales, J., Escobar-Jiménez, R., Gómez-Aguilar, J., López-López, G., & Torres, L. (2018). Implementation of a fault tolerant system for the internal combustion engine’s MAF sensor. Measurement, 122, 91-99. doi: https://doi.org/10.1016/j.measurement.2018.03.006
Isermann, R. (2017). Combustion engine diagnosis. Springer Vieweg.
Nyberg, M., & Stutte, T. (2004). Model based diagnosis of the air path of an automotive diesel engine. Control Engineering Practice, 12(5), 513-525. (Fuzzy System Applications in Control) doi: https://doi.org/10.1016/S0967-0661(03)00120-5
Pachner, D., Lansky, L., Germann, D., & Eigenmann, M. (2015, April). Fitting turbocharger maps with multidimensional rational functions. In SAE 2015 world congress & exhibition. SAE International. doi: https://doi.org/10.4271/2015-01-1719
Polóni, T., Dickinson, P., & Pekaˇr, J. (2021, August). Methods of health degradation estimation and fault isolation for system health monitoring. (US Patent Application No. 17/407,047)
Polóni, T., Rohal’-Ilkiv, B., & Arne Johansen, T. (2014). Mass flow estimation with model bias correction for a turbocharged diesel engine. Control Engineering Practice, 23, 22-31. doi: https://doi.org/10.1016/j.conengprac.2013.10.011
Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., . . . Zhao, H. (2020). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi: 10.1177/1468087419877990
Schilling, A., Amstutz, A., & Guzzella, L. (2008). Model-based detection and isolation of faults due to ageing in the air and fuel paths of common-rail direct injection diesel engines equipped with a λ and a nitrogen oxides sensor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(1), 101-117. doi: 10.1243/09544070JAUTO659
Simon, D. (2006). Optimal state estimation. Wiley.
Wassén, H., Dahl, J., & Idelchi, A. (2019). Holistic diesel engine and exhaust after-treatment model predictive control. IFAC-PapersOnLine, 52(5), 347-352. (9th IFAC Symposium on Advances in Automotive Control AAC 2019) doi: https://doi.org/10.1016/j.ifacol.2019.09.056
Zhang, J., Zhao, H., Feng, Z., & Liu, L. (2021). Fault-tolerant control for turbocharged diesel engine air path via disturbance observer. International Journal of Systems Science, 52(7), 1329-1345. doi: 10.1080/00207721.2020.1856449
Section
Technical Papers