Emergence of Machine Learning Techniques in Ultrasonic Guided Wave-based Structural Health Monitoring A Narrative Review

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published May 23, 2022
Afshin Sattarifar Tamara Nestorović

Abstract

Identification of damage in its early stage can have a great contribution in decreasing the maintenance costs and prolonging the life of valuable structures. Although conventional damage detection techniques have a mature background, their widespread application in industrial practice is still missing. In recent years the application of Machine Learning (ML) algorithms have been more and more exploited in structural health monitoring systems (SHM). Because of the superior capabilities of ML approaches in recognizing and classifying available patterns in a dataset, they have demonstrated a significant improvement in traditional damage identification algorithms. This review study focuses on the use of machine learning (ML) approaches in Ultrasonic Guided Wave (UGW)-based SHM, in which a structure is continually monitored using permanent sensors. Accordingly, multiple steps required for performing damage detection through UGWs are stated. Moreover, it is outlined that the employment of ML techniques for UGW-based damage detection can be subtended into two main phases: (1) extracting features from the data set, and reducing the dimension of the data space, (2) processing the patterns for revealing patterns, and classification of instances. With this regard, the most frequent techniques for the realization of those two phases are elaborated. This study shows the great potential of ML algorithms to assist and enhance UGW-based damage detection algorithms.

Abstract 2444 | PDF Downloads 851

##plugins.themes.bootstrap3.article.details##

Keywords

damage detection, structural health monitoring, artificial intelligence, ultrasonic guided wave, machine learning

References
Adeli, E., Rosic, B., Matthies, H. G., Reinstädler, S., & Dinkler, D. (2020a). Bayesian parameter determination of a ct-test described by a viscoplastic-damage model considering the model error. Metals, 10(9), 1141.
Adeli, E., Rosic, B., Matthies, H. G., Reinstädler, S., & Dinkler, D. (2020b). Comparison of bayesian methods on parameter identification for a viscoplastic model with damage. Probabilistic Engineering Mechanics, 62, 103083.
Agarwal, S., & Mitra, M. (2014, jul). Lamb wave based automatic damage detection using matching pursuit and machine learning. Smart Materials and Structures, 23(8), 085012. doi: 10.1088/0964-1726/23/8/085012
Alguri, K. S., Melville, J., Deemer, C., & Harley, J. B. (2018). Overcoming complexities: Damage detection using dictionary learning framework. AIP Conference Proceedings, 1949(April). doi: 10.1063/1.5031653
Alguri, K. S., Melville, J., & Harley, J. B. (2018). Baseline-free guided wave damage detection with surrogate data and dictionary learning. The Journal of the Acoustical Society of America, 143(6), 3807–3818. doi: 10.1121/1.5042240
Antonis K. Alexandridis, A. D. Z. (2014). Wavelet neural networks. John Wiley & Sons, Ltd.
Arcos Jiménez, A., Gómez Muñoz, C. Q., & García Márquez, F. P. (2019). Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers. Reliability Engineering and System Safety, 184(February 2018), 2–12. doi: 10.1016/j.ress.2018.02.013
Arcos Jiménez, A., Zhang, L., Gómez Muñoz, C. Q., & García Márquez, F. P. (2020). Maintenance management based on Machine Learning and nonlinear features in wind turbines. Renewable Energy, 146, 316–328. doi: 10.1016/j.renene.2019.06.135
Atashipour, S. A., Mirdamadi, H. R., Hemasian-Etefagh, M. H., Amirfattahi, R., & Ziaei-Rad, S. (2012, nov). An effective damage identification approach in thick steel beams based on guided ultrasonic waves for structural health monitoring applications. Journal of Intelligent Material Systems and Structures, 24(5), 584–597. doi: 10.1177/1045389x12468219
Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2021, jan). A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications. Mechanical Systems and Signal Processing, 147, 107077. doi: 10.1016/j.ymssp.2020.107077
Azuara, G., Ruiz, M., & Barrera, E. (2021, aug). Damage localization in composite plates using wavelet transform and 2-d convolutional neural networks. Sensors, 21(17), 5825. doi: 10.3390/s21175825
Bakir, M., Rebillat, M., & Mechbal, N. (2015). Damage type classification based on structures nonlinear dynamical signature. IFAC-PapersOnLine, 48(21), 652–657. doi: 10.1016/j.ifacol.2015.09.601
Barthorpe, R. J., Hughes, A. J., & Gardner, P. (2021, may). A forward model driven structural health monitoring paradigm: Damage detection. In Model validation and uncertainty quantification, volume 3 (pp. 119–126). Springer International Publishing. doi: 10.1007/978-3-030-77348-9
Bedworth, M., & O'Brien, J. (2000, apr). The omnibus model: a new model of data fusion. IEEE Aerospace and Electronic Systems Magazine, 15(4), 30–36. doi: 10.1109/62.839632
Betz, D. C., Staszewski, W. J., Thursby, G., & Culshaw, B. (2006, aug). Structural damage identification using multifunctional bragg grating sensors: II. damage detection results and analysis. Smart Materials and Structures, 15(5), 1313–1322. doi: 10.1088/0964-1726/15/5/021
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press.
Box, G. (2008). Time series analysis : forecasting and control. Hoboken, N.J: John Wiley.
Cantero-Chinchilla, S., Aranguren, G., Royo, J. M., Chiachío, M., Etxaniz, J., & Calvo-Echenique, A. (2021, feb). Structural health monitoring using ultrasonic guided-waves and the degree of health index. Sensors, 21(3), 993. doi: 10.3390/s21030993
Cantero-Chinchilla, S., Chiachío, J., Chiachío, M., Chronopoulos, D., & Jones, A. (2019, may). A robust bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves. Mechanical Systems and Signal Processing, 122, 192–205. doi: 10.1016/j.ymssp.2018.12.021
Castiglioni, P. (2005). Levinson-durbin algorithm. Encyclopedia of Biostatistics, 4.
Chen, X., Li, X., Wang, S., Yang, Z., Chen, B., & He, Z. (2013, may). Composite damage detection based on redundant second-generation wavelet transform and fractal dimension tomography algorithm of lamb wave. IEEE Transactions on Instrumentation and Measurement, 62(5), 1354–1363. doi: 10.1109/tim.2012.2224277
Chimenti, D. E. (1997, may). Guided waves in plates and their use in materials characterization. Applied Mechanics Reviews, 50(5), 247–284. doi: 10.1115/1.3101707
Chui, C. K. (1997). Wavelets : a mathematical tool for signal processing. Philadelphia: Society for Industrial and Applied Mathematics.
Coverley, P. T., & Staszewski, W. J. (2003, sep). Impact damage location in composite structures using optimized sensor triangulation procedure. Smart Materials and Structures, 12(5), 795–803. doi: 10.1088/0964-1726/12/5/017
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press. doi: 10.1017/cbo9780511801389
Cui, R., Azuara, G., di Scalea, F. L., & Barrera, E. (2021, jun). Damage imaging in skin-stringer composite aircraft panel by ultrasonic-guided waves using deep learning with convolutional neural network. Structural Health Monitoring, 147592172110239. doi: 10.1177/14759217211023934
Dabetwar, S., Ekwaro-Osire, S., & Dias, J. (2020, 05). Damage detection of composite materials using data fusion with deep neural networks.
Dackermann, U., Skinner, B., & Li, J. (2014, feb). Guided wave–based condition assessment of in situ timber utility poles using machine learning algorithms. Structural Health Monitoring: An International Journal, 13(4), 374–388. doi: 10.1177/1475921714521269
Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005. doi: 10.1109/18.57199
Dib, G., Karpenko, O., Koricho, E., Khomenko, A., Haq, M., &Udpa, L. (2018, jan). Ensembles of novelty detection classifiers for structural health monitoring using guided waves. Smart Materials and Structures, 27(1), 015003. doi: 10.1088/1361-665X/aa973f
Dworakowski, Z., Ambrozinski, L., Packo, P., Dragan, K., & Stepinski, T. (2014, apr). Application of artificial neural networks for compounding multiple damage indices in lamb-wave-based damage detection. Structural Control and Health Monitoring, 22(1), 50–61. doi: 10.1002/stc.1659
Ewald, V., Groves, R. M., & Benedictus, R. (2019). DeepSHM: a deep learning approach for structural health monitoring based on guided Lamb wave technique. , 19. doi: 10.1117/12.2506794
Eybpoosh, M., Berges, M., & Noh, H. Y. (2017). An energy-based sparse representation of ultrasonic guided-waves for online damage detection of pipelines under varying environmental and operational conditions. Mechanical Systems and Signal Processing, 82, 260–278. doi: 10.1016/j.ymssp.2016.05.022
Farrar, C. R., & Worden, K. (2012). Structural health monitoring. John Wiley & Sons, Ltd. doi: 10.1002/9781118443118
Figueiredo, E., Figueiras, J., Park, G., Farrar, C. R., & Worden, K. (2010, nov). Influence of the autoregressive model order on damage detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 225–238. doi: 10.1111/j.1467-8667.2010.00685.x
Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., . . . Wu, F. (2000, nov). Time-reversed acoustics. Reports on Progress in Physics, 63(12), 1933–1995. doi: 10.1088/0034-4885/63/12/202
Flah, M., Nunez, I., Chaabene, W. B., & Nehdi, M. L. (2020, jul). Machine learning algorithms in civil structural health monitoring: A systematic review. Archives of Computational Methods in Engineering. doi: 10.1007/s11831-020-09471-9
Garg, A., Mahapatra, D. R., Suresh, S., Gopalakrishnan, S., & Omkar, S. (2004, dec). Estimation of composite damage model parameters using spectral finite element and neural network. Composites Science and Technology, 64(16), 2477–2493. doi: 10.1016/j.compscitech.2004.05.010
Ghrib, M., Rébillat, M., Vermot des Roches, G., & Mechbal, N. (2019). Automatic damage type classification and severity quantification using signal based and nonlinear model based damage sensitive features. Journal of Process Control, 83, 136–146. doi: 10.1016/j.jprocont.2018.08.002
Giurgiutiu, V. (2007). Structural health monitoring. Elsevier Science & Techn.
Goodfellow, I. (2016). Deep learning. Cambridge, Massachusetts: The MIT Press.
Gordan, M., Razak, H. A., Ismail, Z., & Ghaedi, K. (2017). Recent developments in damage identification of structures using data mining. Latin American Journal of Solids and Structures, 14(13), 2373–2401. doi: 10.1590/1679-78254378
Géron, A. (2019). Hands-on machine learning with scikitlearn, keras, and tensorflow. O’Reilly UK Ltd.
Haykin, S. (1994). Neural networks : a comprehensive foundation. New York Toronto New York: Macmillan Maxwell Macmillan Canada Maxwell Macmillan International.
Hesser, D. F., Kocur, G. K., & Markert, B. (2020). Active source localization in wave guides based on machine learning. Ultrasonics, 106(April), 106144. doi: 10.1016/j.ultras.2020.106144
Hochreiter, S., & Schmidhuber, J. (1997, nov). Long short-term memory. Neural Computation, 9(8), 1735–1780. doi: 10.1162/neco.1997.9.8.1735
Hoshyar, A. N., Samali, B., Liyanapathirana, R., Houshyar, A. N., & Yu, Y. (2019, nov). Structural damage detection and localization using a hybrid method and artificial intelligence techniques. Structural Health Monitoring, 19(5), 1507–1523. doi: 10.1177/1475921719887768
Jansen, D., Hutchins, D., & Mottram, J. (1994, mar). Lamb wave tomography of advanced composite laminates containing damage. Ultrasonics, 32(2), 83–90. doi: 10.1016/0041-624x(94)90015-9
Jiménez, A. A., García Márquez, F. P., Moraleda, V. B., & Gómez Muñoz, C. Q. (2019). Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis. Renewable Energy, 132, 1034–1048. doi: 10.1016/j.renene.2018.08.050
Jiménez, A. A., Gómez Muñoz, C. Q., & García Márquez, F. P. (2018). Machine learning for wind turbine blades maintenance management. Energies, 11(1), 1–16. doi: 10.3390/en11010013
Jolliffe, I. (2002). Principal component analysis. Springer-Verlag. doi: 10.1007/b98835
Kedra, R., & Rucka, M. (2017). Damage detection in a bolted lap joint using guided waves. Procedia Engineering, 199, 2114–2119. doi: 10.1016/j.proeng.2017.09.070
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021, apr). 1d convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398. doi: 10.1016/j.ymssp.2020.107398
Konstantinidis, G., Drinkwater, B. W., & Wilcox, P. D. (2006, jun). The temperature stability of guided wave structural health monitoring systems. Smart Materials and Structures, 15(4), 967–976. doi: 10.1088/0964-1726/15/4/010
Kramer, M. A. (1991, feb). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37(2), 233–243. doi: 10.1002/aic.690370209
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th international conference on neural information processing systems - volume 1 (p. 1097–1105). Red Hook, NY, USA: Curran Associates Inc.
Lamb, H. (1917, mar). On waves in an elastic plate. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 93(648), 114–128. doi: 10.1098/rspa.1917.0008
Lee, B. C., & Staszewski, W. J. (2003, sep). Modelling of lamb waves for damage detection in metallic structures: Part i. wave propagation. Smart Materials and Structures, 12(5), 804–814. doi: 10.1088/0964-1726/12/5/018
Leontaritis, I. J., & Billings, S. A. (1985, feb). Input-output parametric models for non-linear systems part i: deterministic non-linear systems. International Journal of Control, 41(2), 303–328. doi: 10.1080/0020718508961129
Li, R., Gu, H., Hu, B., & She, Z. (2019). Multi-feature fusion and damage identification of large generator stator insulation based on lamb wave detection and SVM method. Sensors (Switzerland), 19(17). doi: 10.3390/s19173733
Liao, S., Ou, L., & Xu, L. (2020). Super-resolution ultrasound lamb wave NDE imaging of anisotropic airplane laminates via deconvolutional neural network. IEEE Transactions on Instrumentation and Measurement, 1–1. doi: 10.1109/tim.2020.3016153
Liew, C. K., & Veidt, M. (2009, feb). Pattern recognition of guided waves for damage evaluation in bars. Pattern Recognition Letters, 30(3), 321–330. doi: 10.1016/j.patrec.2008.10.001
Liu, H., & Zhang, Y. (2020, jan). Deep learning based crack damage detection technique for thin plate structures using guided lamb wave signals. Smart Materials and Structures, 29(1), 015032. doi: 10.1088/1361-665X/ab58d6
Mardanshahi, A., Nasir, V., Kazemirad, S., & Shokrieh, M. (2020). Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks. Composite Structures, 246(April), 112403. doi: 10.1016/j.compstruct.2020.112403
Mariani, S., Rendu, Q., Urbani, M., & Sbarufatti, C. (2021). Causal dilated convolutional neural networks for automatic inspection of ultrasonic signals in nondestructive evaluation and structural health monitoring. Mechanical Systems and Signal Processing, 157, 107748. doi: 10.1016/j.ymssp.2021.107748
Marino, M., Virupakshappa, K., & Oruklu, E. (2019). A New Classifier Network for Ultrasonic NDE Applications based on Ensemble Deep Learning. IEEE International Ultrasonics Symposium, IUS, 2019-Octob, 1635–1638. doi: 10.1109/ULTSYM.2019.8926229
Martinez-Luengo, M., Kolios, A., & Wang, L. (2016, oct). Structural health monitoring of offshore wind turbines: A review through the statistical pattern recognition paradigm. Renewable and Sustainable Energy Reviews, 64, 91–105. doi: 10.1016/j.rser.2016.05.085
McCulloch, W. S., & Pitts, W. (1943, dec). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. doi: 10.1007/bf02478259
McKeon, J. C. P., & Hinders, M. K. (1999, nov). Parallel projection and crosshole lamb wave contact scanning tomography. The Journal of the Acoustical Society of America, 106(5), 2568–2577. doi: 10.1121/1.428088
Mechbal, N., & Rebillat, M. (2017). Damage indexes comparison for the structural health monitoring of a stiffened composite plate. In A. Güemes, A. Benjeddou, J. Rodellar, & J. Leng (Eds.), 8th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2017) (p. 436-444). Madrid, Spain.
Melville, J., Alguri, K. S., Deemer, C., & Harley, J. B. (2018). Structural damage detection using deep learning of ultrasonic guided waves. AIP Conference Proceedings, 1949(April). doi: 10.1063/1.5031651
Mesnil, O., Imperiale, A., Demaldent, E., Baronian, V., & Chapuis, B. (2018). Simulation tools for guided wave based structural health monitoring. Author(s). doi: 10.1063/1.5031543
Michaels, J. E. (2008, may). Detection, localization and characterization of damage in plates with anin situarray of spatially distributed ultrasonic sensors. Smart Materials and Structures, 17(3), 035035. doi: 10.1088/0964-1726/17/3/035035
Michaels, J. E., Lee, S. J., Croxford, A. J., & Wilcox, P. D. (2013, jan). Chirp excitation of ultrasonic guided waves. Ultrasonics, 53(1), 265–270. doi: 10.1016/j.ultras.2012.06.010
Michaels, J. E., & Michaels, T. E. (2007a, jun). Guided wave signal processing and image fusion for in situ damage localization in plates. Wave Motion, 44(6), 482–492. doi: 10.1016/j.wavemoti.2007.02.008
Michaels, J. E., & Michaels, T. E. (2007b, apr). An integrated strategy for detection and imaging of damage using a spatially distributed array of piezoelectric sensors. In T. Kundu (Ed.), Health monitoring of structural and biological systems 2007. SPIE. doi: 10.1117/12.715438
Minsky, M. (1969). Perceptrons; an introduction to computational geometry. Cambridge, Mass: MIT Press.
Miorelli, R., Kulakovskyi, A., Mesnil, O., & D’Almeida, O. (2019). Automatic defect localization and characterization through machine learning based inversion for guided wave imaging in SHM. AIP Conference Proceedings, 2102. doi: 10.1063/1.5099771
Mishra, M. (2020, oct). Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. Journal of Cultural Heritage. doi: 10.1016/j.culher.2020.09.005
Mitra, M., & Gopalakrishnan, S. (2016, mar). Guided wave based structural health monitoring: A review. Smart Materials and Structures, 25(5), 053001. doi: 10.1088/0964-1726/25/5/053001
Mujica, L., Rodellar, J., Fernández, A., & Güemes, A. (2010, nov). Q-statistic and t2-statistic PCA-based measures for damage assessment in structures. Structural Health Monitoring: An International Journal, 10(5), 539–553. doi: 10.1177/1475921710388972
Murta, R. H., Vieira, F. d. A., Santos, V. O., & de Moura, E. P. (2018). Welding Defect Classification from Simulated Ultrasonic Signals. Journal of Nondestructive Evaluation, 37(3). doi: 10.1007/s10921-018-0496-y
Newland, D. E. (1994, oct). Wavelet analysis of vibration: Part 2—wavelet maps. Journal of Vibration and Acoustics, 116(4), 417–425. doi: 10.1115/1.2930444
Olisa, S. C., Khan, M. A., & Starr, A. (2021, jan). Review of current guided wave ultrasonic testing (GWUT) limitations and future directions. Sensors, 21(3), 811. doi: 10.3390/s21030811
Pandey, J. N. (1996). The hilbert transform of schwartz distributions and applications. New York: Wiley.
Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., & Wang, R. (2018, sep). Development and application of a deep learning–based sparse autoencoder framework for structural damage identification. Structural Health Monitoring, 18(1), 103–122. doi: 10.1177/1475921718800363
Perelli, A., Marchi, L. D., Marzani, A., & Speciale, N. (2014, mar). Frequency warped cross-wavelet multiresolution analysis of guided waves for impact localization. Signal Processing, 96, 51–62. doi: 10.1016/j.sigpro.2013.05.008
Poddar, B., Kumar, A., Mitra, M., & Mujumdar, P. M. (2011, jan). Time reversibility of a lamb wave for damage detection in a metallic plate. Smart Materials and Structures, 20(2), 025001. doi: 10.1088/0964-1726/20/2/025001
Qian, C., Ran, Y., He, J., Ren, Y., Sun, B., Zhang, W., & Wang, R. (2020, mar). Application of artificial neural networks for quantitative damage detection in unidirectional composite structures based on lamb waves. Advances in Mechanical Engineering, 12(3), 1687814020914732. doi: 10.1177/1687814020914732
Quaegebeur, N., Masson, P., Langlois-Demers, D., & Micheau, P. (2011, jan). Dispersion-based imaging for structural health monitoring using sparse and compact arrays. Smart Materials and Structures, 20(2), 025005. doi: 10.1088/0964-1726/20/2/025005
Quaegebeur, N., Ostiguy, P. C., & Masson, P. (2014, mar). Correlation-based imaging technique for fatigue monitoring of riveted lap-joint structure. Smart Materials and Structures, 23(5), 055007. doi: 10.1088/0964-1726/23/5/055007
Raghavan, A., & Cesnik, C. E. S. (2007, mar). Review of guided-wave structural health monitoring. The Shock and Vibration Digest, 39(2), 91–114. doi: 10.1177/0583102406075428
Rai, A., & Mitra, M. (2021). Lamb wave based damage detection in metallic plates using multi-headed 1-dimensional convolutional neural network. Smart Materials and Structures, 30. doi: 10.1088/1361-665X/abdd00
Ramón y Cajal, S. (1910). Histologie du système nerveux de l’homme & des vertébrés. (Vol. 1). Paris: Maloine.
Rautela, M., Senthilnath, J., Moll, J., & Gopalakrishnan, S. (2021, aug). Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning. Ultrasonics, 115, 106451. doi: 10.1016/j.ultras.2021.106451
Rose, J. (2000, may). Guided wave nuances for ultrasonic nondestructive evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47(3), 575–583. doi: 10.1109/58.842044
Rose, J. L. (2002, jul). A baseline and vision of ultrasonic guided wave inspection potential. Journal of Pressure Vessel Technology, 124(3), 273–282. doi: 10.1115/1.1491272
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65–386.
Rytter, A. (1993). Vibrational based inspection of civil engineering structures (Unpublished doctoral dissertation). Dept. of Building Technology and Structural Engineering, Aalborg University.
Sattarifar, A., & Nestorovic, T. (2021, 09). Feature Generation and Selection for Identification of Damage in Thin-Walled Structures Based on a Statistical Approach. In (Vols. ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems). (V001T08A003) doi: 10.1115/SMASIS2021-67538
Sattarifar, A., & Nestorovic, T. (2019, nov). Frequency-bounded delay and sum: A modified damage detection method in thin-walled plates. PAMM, 19(1). doi: 10.1002/pamm.201900368
Sattarifar, A., & Nestorovic, T. (2021). Assessment of a dual kalman filter-based approach for input/output estimation in an aluminum plate. In P. Rizzo & A. Milazzo (Eds.), European workshop on structural health monitoring (pp. 584–593). Cham: Springer International Publishing.
Sbarufatti, C., Manson, G., & Worden, K. (2014, sep). A numerically-enhanced machine learning approach to damage diagnosis using a lamb wave sensing network. Journal of Sound and Vibration, 333(19), 4499-4525. doi: 10.1016/j.jsv.2014.04.059
Scholz, M., & Vigário, R. (2002). Nonlinear pca: a new hierarchical approach. In Esann.
Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524–537. doi: 10.1016/j.ymssp.2019.06.003
Seno, A. H., Sharif Khodaei, Z., & Aliabadi, M. H. (2019). Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions. Mechanical Systems and Signal Processing, 129, 20–36. doi: 10.1016/j.ymssp.2019.04.023
Sharif-Khodaei, Z., & Aliabadi, M. H. (2014, may). Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates. Smart Materials and Structures, 23(7), 075007. doi: 10.1088/0964-1726/23/7/075007
Staszewski, W. (2002, jun). Intelligent signal processing for damage detection in composite materials. Composites Science and Technology, 62(7-8), 941–950. doi: 10.1016/s0266-3538(02)00008-8
Staszewski, W. J., & Worden, K. (2003). Signal processing for damage detection. In Health monitoring of aerospace structures (pp. 163–206). John Wiley & Sons, Ltd. doi: 10.1002/0470092866.ch5
Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., . . . Sui, Q. (2020). Damage assessments of composite under the environment with strong noise based on synchrosqueezing wavelet transform and stack autoencoder algorithm. Measurement: Journal of the International Measurement Confederation, 156, 107587. doi: 10.1016/j.measurement.2020.107587
Su, C., Jiang, M., Lv, S., Lu, S., Zhang, L., Zhang, F., & Sui, Q. (2019). Improved damage localization and quantification of cf/ep using lamb waves and convolution neural network. IEEE Sensors Journal, 19, 5784-5791. doi: 10.1109/JSEN.2019.2908838
Su, Z., Wang, X., Chen, Z., Ye, L., & Wang, D. (2006, nov). Abuilt-inactive sensor network for health monitoring of composite structures. Smart Materials and Structures, 15(6), 1939–1949. doi: 10.1088/0964-1726/15/6/050
Su, Z., & Ye, L. (2004, oct). Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Composite Structures, 66(1-4), 627–637. doi: 10.1016/j.compstruct.2004.05.011
Su, Z., & Ye, L. (2009). Processing of lamb wave signals. In Identification of damage using lamb waves (pp. 143–193). Springer London.
Su, Z., Ye, L., & Lu, Y. (2006, aug). Guided lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration, 295(3-5), 753–780. doi: 10.1016/j.jsv.2006.01.020
Tabian, I., Fu, H., & Khodaei, Z. S. (2019). A convolutional neural network for impact detection and characterization of complex composite structures. Sensors (Switzerland), 19, 1-25. doi: 10.3390/s19224933
Tan, L., Saito, O., Yu, F., Okabe, Y., Kondoh, T., Tezuka, S., & Chiba, A. (2022, jan). Impact damage detection using chirp ultrasonic guided waves for development of health monitoring system for cfrp mobility structures. Sensors, 22(3), 789. doi: 10.3390/s22030789
Tibaduiza, D., Torres-Arredondo, M. Á., Vitola, J., Anaya, M., & Pozo, F. (2018). A Damage Classification Approach for Structural Health Monitoring Using Machine Learning. Complexity, 2018. doi: 10.1155/2018/5081283
Tibaduiza, D. A., Mujica, L. E., Rodellar, J., & Güemes, A. (2016). Structural damage detection using principal component analysis and damage indices. Journal of Intelligent Material Systems and Structures, 27(2), 233–248. doi: 10.1177/1045389X14566520
Toh, G., & Park, J. (2020, mar). Review of vibration-based structural health monitoring using deep learning. Applied Sciences, 10(5), 1680. doi: 10.3390/app10051680
Tracy, M., & Chang, F.-K. (1998, nov). Identifying impacts in composite plates with piezoelectric strain sensors, part i: Theory. Journal of Intelligent Material Systems and Structures, 9(11), 920–928. doi: 10.1177/1045389x9800901108
Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.
Vieira, A. P., de Moura, E. P., & Gonc¸alves, L. L. (2010, jul). Fluctuation analyses for pattern classification in nondestructive materials inspection. EURASIP Journal on Advances in Signal Processing, 2010(1). doi: 10.1155/2010/262869
Virkkunen, I., Koskinen, T., Jessen-Juhler, O., & Rinta-Aho, J. (2019). Augmented Ultrasonic Data for Machine Learning. (2010).
Virupakshappa, K., & Oruklu, E. (2015, oct). Ultrasonic flaw detection using support vector machine classification. In 2015 IEEE international ultrasonics symposium (IUS). IEEE. doi: 10.1109/ultsym.2015.0128
Virupakshappa, K., & Oruklu, E. (2019). Unsupervised Machine Learning for Ultrasonic Flaw Detection using Gaussian Mixture Modeling, K-Means Clustering and Mean Shift Clustering. IEEE International Ultrasonics Symposium, IUS, 2019-Octob, 647–649. doi: 10.1109/ULTSYM.2019.8926078
Vitola, J., Pozo, F., Tibaduiza, D. A., & Anaya, M. (2017). A sensor data fusion system based on k-nearest neighbor pattern classification for structural health monitoring applications. Sensors, 17(2). doi: 10.3390/s17020417
Wang, C. H., Rose, J. T., & Chang, F.-K. (2004, mar). A synthetic time-reversal imaging method for structural health monitoring. Smart Materials and Structures, 13(2), 415–423. doi: 10.1088/0964-1726/13/2/020
Wang, K., Zhang, J., Shen, Y., Karkera, B., Croxford, A. J., & Wilcox, P. D. (2021, jun). Defect detection in guided wave signals using nonlinear autoregressive exogenous method. Structural Health Monitoring, 147592172110186. doi: 10.1177/14759217211018698
Wang, Z., & Cha, Y.-J. (2020, jul). Unsupervised deep learning approach using a deep auto-encoder with an one-class support vector machine to detect structural damage. Structural Health Monitoring, 147592172093405. doi: 10.1177/1475921720934051
Worden, K., & Manson, G. (2006, dec). The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 515–537. doi: 10.1098/rsta.2006.1938
Xiao, X., Gao, B., Tian, G. Y., Gang Cai, Z., & qing Wang, K. (2020). Physical perspective forward-inverse learning for ultrasonic sensing diagnosis in small diameter and thin-wall tube. Ultrasonics, 105(September 2019), 106115. doi: 10.1016/j.ultras.2020.106115
Xu, L., Yuan, S., Chen, J., & Ren, Y. (2019). Guided wave-convolutional neural network based fatigue crack diagnosis of aircraft structures. Sensors (Switzerland), 19. doi: 10.3390/s19163567
Yan, G. (2013, feb). A bayesian approach for damage localization in plate-like structures using lamb waves. Smart Materials and Structures, 22(3), 035012. doi: 10.1088/0964-1726/22/3/035012
Yan, W.-J., Chronopoulos, D., Papadimitriou, C., Cantero-Chinchilla, S., & Zhu, G.-S. (2020, mar). Bayesian inference for damage identification based on analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme. Journal of Sound and Vibration, 468, 115083. doi: 10.1016/j.jsv.2019.115083
Yue, H. H., & Qin, S. J. (2001). Reconstruction-based fault identification using a combined index. Industrial & Engineering Chemistry Research, 40(20), 4403-4414. doi: 10.1021/ie000141+
Zargar, S. A., & Yuan, F. G. (2021). Impact diagnosis in stiffened structural panels using a deep learning approach. Structural Health Monitoring, 20, 681-691. doi: 10.1177/1475921720925044
Zhang, S., Li, C. M., & Ye, W. (2021, jan). Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network. Mechanical Systems and Signal Processing, 147, 107107. doi: 10.1016/j.ymssp.2020.107107
Zhang, X., Zou, J., He, K., & Sun, J. (2016, oct). Accelerating very deep convolutional networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 1943–1955. doi: 10.1109/tpami.2015.2502579
Zhang, Z., Pan, H., Wang, X., & Lin, Z. (2020, mar). Machine learning-enriched lamb wave approaches for automated damage detection. Sensors, 20(6), 1790. doi: 10.3390/s20061790
Zhao, X., Royer, R. L., Owens, S. E., & Rose, J. L. (2011, aug). Ultrasonic lamb wave tomography in structural health monitoring. Smart Materials and Structures, 20(10), 105002. doi: 10.1088/0964-1726/20/10/105002
Zhongqing SU, L. Y. (2009). Identification of damage using lamb waves. Springer-Verlag GmbH.
Section
Technical Papers