Quadrotor Accelerometer and Gyroscope Sensor Fault Diagnosis Using Nonlinear Adaptive Estimation Methods

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 11, 2020
Remus Avram Xiaodong Zhang Jonathan Muse

Abstract

This paper presents the design, analysis, and real-time experimental evaluation results of a nonlinear sensor fault diagnosis scheme for quadrotor unmanned air vehicles (UAV). The objective is to detect, isolate, and estimate sensor bias faults in accelerometer and gyroscope measurements. Based on the quadrotor dynamics and sensor models under consideration, the effects of sensor faults are represented as virtual actuator faults in the quadrotor state equation. Two nonlinear diagnostic estimators are designed to provide structured residuals
for fault detection and isolation. Additionally, after the fault is detected and isolated, a nonlinear adaptive estimation scheme is employed for estimating the unknown fault magnitude.
The proposed fault diagnosis scheme is capable of handling simultaneous faults in the accelerometer and gyroscope measurements. The effectiveness of the fault diagnosis method is demonstrated using an indoor real-time quadrotor UAV test environment.

Abstract 248 | PDF Downloads 262

##plugins.themes.bootstrap3.article.details##

Keywords

sensor fault diagnosis, bias estimation, quadrotor UAV

References
Anderson, B. D. O., Bitmead, R. R., Johnson, C. R., Jr., Kokotovic, P. V., Kosut, R. L., Mareels, I. M., . . . Riedle, B. D. (1986). Stability of Adaptive Systems: Passivity and Averaging Analysis. Cambridge, Massachusettes: The MIT Press.
Bangura, M., & Mahony, R. (2012). Nonlinear dynamic modelling for high performance control of a quadrotor. In Proceedings of Austrasian Conference on Robotics and Automation.
Bastin, G., & Gevers, M. (1988). Stable adaptive observers for nonlinear time-varying systems. IEEE Transactions on Automatic Control, 33(7), 650-658.
Castillo, P., Lozano, R., & Dzul, A. (2005). Modelling and Control of Mini-Flying Machines. Berlin: Springer- Verlag.
Dydek, Z. T., Annaswamy, A. M., & Lavretsky, E. (2013). Adaptive control of quadrotors UAVs: A design trade study with flight evaluations. IEEE Transaction on Automatic Control Systems Technology, 21(4), 1400-1406.
Freddi, A., Longhi, S., & Monteri´u, A. (2009). A modelbased fault diagnosis system for a mini-quadrotor. In 7th Workshop on Advanced Control and Diagnosis.
Guenard, N., Hamel, T., & Mahony, R. (2008). A practical visual servo control for an unmanned aerial vehicle. IEEE Transaction on Robotics, 24(2), 331-340.
Gustafsson, F. (2000). Adaptive filtering and change detection. Wiley, West Sussex, England.
Ioannou, P. A., & Sun, J. (1996). Robust Adaptive Control. Mineola, New York: Dover Publications, Inc.
Ireland, M., & Anderson, D. (2012). Development of navigation algorithms for NAP-of-the-earth UAV flight in a constrained urban environment. In 28th International Congress of the Aeronautical Sciences.
Lantos, B., & Marton, L. (2011). Nonlinear Control of Vehicles and Robots. In (chap. Nonlinear Control of Airplanes and Helicopters). Springer-London.
Leishman, R. C., McDonald, J. C., Beard, R. W., & McLain, T. (2014). Quadrotors and accelerometers. State estimation with an improved dynamic model. IEEE Control Systems Magazine, 34(1), 28-41.
Macdonald, J., Leishman, R., Beard, R., & McLain, T. (2014). Analysis of an improved IMU-based observer for multirotor helicopters. Journal of Intelligent Robotic Systems, 64, 1049-1061.
Martin, P., & Sala¨un, E. (2010). The true role of accelerometer feedback in quadrotor control. In IEEE International Conference on Robotics and Automation.
Pounds, P., Mahony, R., & Gresham, J. (2004). Towards dynamically-favourable quad-rotor aerial robots. In Australasian Conference on Robotics and Automation, ACRA.
Shima, T., & Rasmussen, S. (2008). UAV Cooperative Decision and Control: Challenges and Practical Approaches. US Dept. of Defense. (2012). Unmanned systems integrated roadmap FY2011-2036 (Tech. Rep.). Secretary of Defense, Washington, D.C.
Vachtsevanos, G., Tang, L., Drozeski, G., & Gutierrez, L. (2005). From mission planning to flight control of unmanned aerial vehicles: Strategies and implementation tools. Anual Reviews in Control, 29, 101-115.
Zhang, X. (2011). Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation. IEEE Transaction on Automatic Control, 56(5), 1220-1226.
Zhang, X., Polycarpou, M., & Parsini, T. (2001). Robust fault isolation for a class of non-linear input-output systems. International Journal Control, 74(13), 1295-1310.
Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C., Rakheja, S., . . . Gosselin, P. (2013). Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. Journal of the Franklin Institue, 350(9), 2396-2422.
Section
Technical Papers