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ABSTRACT 

This study addresses prognostics and health management 

(PHM) for manufacturing machines. Different from 

previous researches where continuous monitoring is 

assumed for PHM, we investigate the issue with discrete 

event data. Various event data were recorded during system 

operation, which can provide useful information for fault 

diagnosis and failure prediction. We focus on discovery of 

association rules based on the industrial discrete event data. 

Events that occur together frequently are classified into 

event groups. Apriori algorithm is employed to discover the 

frequent event groups and identify strong association rules 

(occurrence of the events is highly dependent). To 

accommodate the algorithm, the initial event data is 

transformed into the form of transactional data. The 

obtained association rule estimates the occurrence 

probability of certain significant events within specified 

time interval. It is concluded through a case study that the 

number of frequent event groups and strong association 

rules increases with the time interval that the events are 

grouped as one transaction. 

1. INTRODUCTION 

With the fast development of information and sensing 

technology, prognostics and health management (PHM) has 

been widely used in modern systems to provide real time 

data management and processing. PHM predicts the future 

reliability and performance of a system based on the current 

and past condition monitoring data, which is usually 

collected via continuous monitoring (Tsui et al, 2015; Vogl 

et al, 2016). The collected real time measurements allow 

PHM to develop sophisticated models and predict system 

behavior accurately. 

In literature, numerous degradation models have been 

established by taking advantage of the condition monitoring 

data, e.g., Wiener-process-based degradation models, 

Markov chain models, hidden Markov chain models and 

filter-based models (Moura et al, 2013; Si et al, 2013; Lee et 

al, 2014; Lin et al, 2015; Liu et al, 2016; Chandar & Panda, 

2017). Si et al (2013) proposed a Wiener-process-based 

degradation model to estimate the remaining useful lifetime 

of a continuously monitored system. Vrignat et al (2015) 

developed a hidden Markov model to predict failure events, 

and they concluded that the performance of hidden Markov 

model is superior to traditional survival analysis. Belkacem 

et al (2017) investigated PHM of a hybrid dynamic system, 

where optimal maintenance policy and remaining useful life 

are evaluated under continuous monitoring.  

Continuous monitoring is, however, costly or even 

impossible for certain complex systems, despite its 

prevalence and effectiveness in PHM. In cases where 

continuous monitoring is not available, an alternative would 

be to employ discrete event data for prognostic purposes. 

Compared with continuous monitoring, which requires a 

dedicated sensor, discrete event data can be readily recorded 
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and transmitted during machine operation. The events are 

stored in logs, referred to as event/error logs (Oliner et al, 

2012). Usually, the event log contains information of system 

operation, which can be used to monitor system condition 

and provide information for PHM. For example, in a 

manufacturing machine, there are thousands or even 

millions of events during operation of one week. The event 

log data consist of various events/errors during machine 

operation along a timeline. Various information is available 

with respect to the state of machine in operation, such as 

operation mode change, operating pressure/temperature 

unsatisfied, etc..  

The logic behind event log analysis is that failure 

signatures/symptoms usually appear ahead of the final 

failure of a machine. The precedent failure signatures 

provide additional information for failure prediction. In 

practice, discrete event data were used manually to identify 

the failure signature based on area expert experience and 

physical mechanism of the operating machine, which, 

obviously, is time-consuming. Approaches that can 

adequately utilize the discrete event data are warranted for 

machine prognostics and health management. 

Several techniques exist to deal with discrete event data in 

literature. They can be roughly classified into design-based 

approaches and data-driven-based methods (Hatonen et al, 

1996; Mannila et al, 1997; Li et al, 2007; Allison, 2014). 

However, research on discrete event data for PHM is quite 

limited. Li et al (2007) proposed a failure prediction method 

based on a Cox proportional hazard model, where the 

frequent failure signatures are incorporated as the covariates 

of the proportional hazard model. Subsequently, Yuan et al 

(2011) extended the work of Li et al (2007) by fitting the 

Cox proportional hazard model with the event log data and 

evaluating the influence of covariance factors on the 

survival function. One deficiency of the above studies is that 

they assume the system failure rate follows Cox 

proportional hazard model, which, however, may not hold 

true in reality, due to the increasing complexity of modern 

systems. Fronza et al (2013) proposed a failure prediction 

method based on the event log data, where random indexing 

and support vector machine are employed to identify the 

sequence or pattern of events. Russo et al (2015) developed 

a novel method which integrates multiple machine learning 

techniques to address data brittleness and improve the 

robustness of the predicted results. Case study on a 

telemetry system is investigated to show the effectiveness of 

the proposed approach. Support vector machine is an 

effective tool to classify the events into failure signature or 

not. However, it fails to identify the casual links of the 

events.  

In the present study, we aim to investigate the influence of 

discrete event data on PHM of manufacturing machines. An 

association rule learning approach is employed to identify 

the links between the events. Compared with the existing 

methods, the proposed method is more flexible in that it 

generates multiple association rules so that the 

manufacturers can select the rules of interest. Since 

significant rule may not necessarily be the most frequent 

events from the mathematical point of view, but can be the 

ones that have significant consequences in practice, our 

method allows for a comprehensive study of machine 

prognostic and health management. 

The rest of the study is organized as follows. Section 2 

briefly describes the industrial issue and the available 

dataset. Section 3 presents the association rule learning 

method for PHM analysis with the discrete data. 

Application on a manufacturing machine is performed in 

Section 4 to show the effectiveness of the data mining 

approach. Finally, conclusions and future directions are 

provided in Section 5. 

2. PROBLEM DESCRIPTION 

Our study is performed based on industrial discrete event 

data of a large manufacturing company in France, named as 

Predict, Inc. Predict, Inc used to monitor the manufacturing 

machines with dedicated sensors. However, despite the very 

effort of continuous monitoring, failures still occur with 

profound implications. In addition, continuous monitoring is 

expensive and sometimes is technically impossible for 

several special units. Therefore, use of discrete event data 

for PHM is fully of interest of Predict, Inc.  

Table 1 presents the sample event logs of the manufacturing 

machine. As is shown in Table 1, the event data consists of 

the event code, description of the event, occurring date and 

the associated controller. The event data are recorded by 

Programmable Logic Controller (PLC) or Network Control 

Unit (NCU). Different from previous work where system 

failure or error is specified in the event logs, the present 

industrial data only contain various events, while system 

failure is not indicated along with the events. We aim to 

discover whether there exist significant patterns of the event 

that can be used for machine prognostics and health 

management. 

3. ASSOCIATION RULE LEARNING WITH DISCRETE EVENT 

DATA 

For a given discrete event data, the pattern of the events can 

be discovered via statistical models or data mining methods 

(e.g., sequence mining and association rule mining). In the 

present study, we will focus on the association relations 

among the discrete events. Association rule learning is a 

rule-based machine learning method that is used to identify 

the significant relations of the events in large database 

(Agrawal et al, 1993; Sarno et al, 2015). Several strong rules 

are discovered to provide insights of machine operation and 

further applied for decision making.  
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The formal description of association rule learning is stated 

as follows: Let  1 2, ,..., mI I IΙ  be the set of items and T  

be the set of transactions. Each transaction is associated 

with a unique Transaction ID. A transaction 
iT  consists of a 

set of items, where 
iT  Ι . 

iT  is said to contain X , a set of 

items in Ι , if X T . An association rule of two item sets 

is denoted as X Y , where X  Ι , Y  Ι and 

X Y  . Support and Confidence are two major 

measures of the association rule. Support measures the 

frequency of a certain item set in the dataset, which is 

defined as the proportion of transaction tT  in the 

transaction set T  which contains item set X , 

{ ; }
supp( )=

| |

t X t
X

 T

T
                         (1) 

 

A rule X Y  is said to have support s if s% of the 

transactions T  contains X Y . Confidence measures the 

credibility of the rule. The confidence of a rule, X Y , is 

defined as the proportion of transactions that contain both 

item set X  and Y  in transactions that contain X , 

 
supp( )

conf( )=
supp( )

X Y
X Y

X


                    (2) 

If the transaction data is large enough, support can be 

interpreted as the probability that a certain item set appears 

in one transaction, while the confidence can be interpreted 

as the estimate of conditional probability ( | )Y XP E E , where 

XE  (
YE ) denote the event that item set X (Y ) is included 

in one transaction. 

Given a set of transaction data, the goal of association rule 

learning is to find out all the association rules that have 

support and confidence larger than the user-specified 

thresholds. The result will typically appear in the following 

form: 

If event A or B occurs during machine operation 

Then event C will occur within the Time Interval with 

Confidence c% 

The association rule learning typically consists of two parts: 

large item sets identification and association rule 

establishment. Many approaches have been developed to 

discover frequent item sets, e.g., Apriori algorithm, Eclat 

algorithm, and frequent-pattern-growth algorithm (Agrawal 

& Srikant,1994; Zaki, 2000; Mishra & Choubey, 2012). In 

the following, Apriori algorithm will be employed in our 

analysis, due to its easy implementation in practice 

(Agrawal & Srikant, 1994; Rudin et al, 2013). However, 

before implementing Apriori algorithm, the initial event 

data has to be pre-processed so as to fit the algorithm. 

3.1. Data Pre-processing  

One of the major challenges in event log analysis is to 

abstract the event structures, since the log data is usually 

unstructured. To make the event data suitable for association 

rule learning, we first pre-processed the initial data. 

Although the initial event data contains multiple 

dimensions, we were interested in the event code and the 

associated occurrence date. Note that each event was 

recorded at its occurrence, while for the association rule 

learning method, the input data should be in the form of 

transactions. As a first step, we treated the events that occur 

within certain time interval as one transaction. The interval 

was selected in terms of the timestamp of the events, such as 

10 minutes, 30 minute, 1hour, etc.. Within the time interval, 

the identical events were merged to avoid repetition. In 

other words, the events are recorded only once even if they 

appear multiple times within the time interval. The sample 

event data after pre-processing is presented in Table 2. 

 

Table 1. Sample event logs of the manufacturing 

machine 

 

Code Event description Date Controller 

510012 Non-compliant mode 

of operation 

11.06.15  

07:36:28 

PLC 

510219 Sprinkling filtered 

water tank maximum 

level 

17.06.15  

17:10:24 

PLC 

700135 Counterstock / 

counterbalanced 

spindle 

18.06.15  

00:58:18 

PLC 

6406 Channel 1 

Acknowledgment AP 

missing for instruction 

03 

24.06.15  

00:53:40 

NCU 

601114 Gear reduction of the 

main spindle is active 

26.06.15  

14:23:44 

PLC 

 

Table 2. Sample event data for association rule learning 

 

Transaction 

ID 

 Item sets (event code) 

1 {'700137', '700136', '700135', '700454', 

'601011', '700146', '511311', '700143', 

'510011'} 

2 {'700454', '67834', '700205', '6413'} 

3 {'511311', '67834', '6413', '10208'} 

4 {'600914', '700137', '700136', '700135', 

'6413', '700146', '700143', '510011'} 

5 {'600914', '601011', '6413'} 

6 {'300951', '700339', '700338', '510313', 

'700335', '600112', '700337', '700336', 

'27002', '700332', '27006', '701957', 

'700741', '700340', '700035'} 
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3.2. Discovering frequent item sets & strong association 

rules 

Before arriving at association rule discovery, we first need 

to find out the frequent item sets from the discrete event 

dataset. Apriori algorithm is an efficient algorithm to mine 

frequent item sets and learn association rule over 

transactional databases. The discovered large item sets are 

further used to determine strong association rules. Apriori 

algorithm was first proposed by Agrawal and Srikant (1994) 

to operate on discrete data containing transactions.  

Apriori algorithm consists of three steps. First the algorithm 

counts the event occurrence to discover all frequent 1-item 

set. Subsequently, at the kth step, the algorithm creates all 

candidate item sets 
kC  by extending the previous frequent 

item set 
1kL 
 with Apriori Judgement. Next the candidate 

item sets are pruned in terms of the support of the item sets. 

The procedure of Apriori algorithm is shown as follows. 

Apriori Algorithm to discover frequent item sets: 

1. Generate all frequent 1-item sets, 
1L . 

2. Create candidate item sets 
kC . 

for (
12; ;kk L k   ), do 

1_ ( )k k kC creat C L   

3. Prune the candidate item sets to generate frequent item 

sets 
kL  

for all transactions 
iT T , do 

_ ( )k k kL generate L C  

4. Output all the frequent item sets 
k kL . 

The 
1_ ( )k kcreat C L 

 function generates frequent candidate 

item sets according to Apriori property. The previous 

frequent item sets 
1kL 
 is taken as input argument and the 

superset of 
1kL 

 is generated as output. The function 

_ ( )k kgenerate L C  is used to discover all the subset in 
kC  

that exhibit a support larger than the minimal support 

threshold. Any subset that cannot satisfy the support 

criterion is deleted from the frequent item sets. Hash Tree is 

used to store the frequent candidate item sets 
kC  (Agrawal 

& Srikant, 1994). 

Bottom-up approach is used to extend the frequent item sets 

by one item at each candidate generation step. The 

algorithm terminates when no frequent item sets can satisfy 

the minimal support threshold. Breadth-first search and a 

Hash tree structure is employed to count candidate item sets 

efficiently. Apriori algorithm has been widely applied in 

various industries, e.g., market basket analysis, medical 

image classification, and web usage mining (Hipp et al, 

2000; Kumar & Rukmani, 2010).  

After generating the frequent item sets L , the association 

rules of the events were determined. As a first step, we 

searched all the non-empty subsets of the frequent item sets 

L , and output the rule A L A   if the confidence c (ratio 

of supp( )L  to supp( )A ) is larger than the minimal 

confidence threshold. The result was interpreted as follow: 

given the events A  occur, events L A  will occur within 

the time interval with confidence c%. Since the frequent 

item sets were stored in hash tables, the support could be 

calculated efficiently. The procedure of association rules 

identification is as follows. 

Algorithm to identify strong association rules: 

for all frequent item sets 
kL , do 

for all subsets of 
kL , 

kA L , do 

 
supp( )

conf(A )=
supp( )

k

k

L
L A

A
   

if  conf(A )>kL A minconf   

output rule A kL A   with the confidence 

conf(A )kL A   and support supp( )kL  

4. APPLICATION ON MANUFACTURING MACHINES 

The industrial data in our analysis is collected from a 

manufacturing machine. The data are collected in one and a 

half month (from 11 June 2015 to 28 July 2015), which 

records various events during the machine operation. In 

total, 151 different types of events are recorded in the event 

log. 

The industrial data are stored in an Excel file and handled 

by Python. To have an intuitive glance of the event data, we 

first counted the events according to their records in the 

database. Table 3 lists the 10 most frequent events, ranking 

from highest to lowest. The list of frequent events provides 

somewhat importance ranking of events and help managers 

and engineers to focus on the events that have significant 

impact on machine operation. 

Based on the Apriori algorithm, the initial discrete event 

data is transformed into the type of transactional data. To 

achieve this, we treated the events within certain time 

interval as one transaction. The time interval is determined 

by the timestamp of the events or by area experts. For 

example, the time interval of interest should exceed the lead 

time of maintenance actions so that the engineers are able to 

intervene the machine in time. To illustrate the relations 

among the events, we set the time interval as 10 minutes. 

The data after pre-processing is referred to as 10-minute 

transactional data. 
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For the 10-minute transactional data, the frequent event 

groups are presented in Table 4 and the strong association 

rules are shown in Table 5. The minimal support threshold 

was set as 0.1 and the minimal confidence threshold 0.7. 

Note that we only list the 3-item event group in Table 4, as 

3 items is the largest group. According to the down closure 

lemma, which states that any subset of frequent item sets is 

also frequent, other frequent event groups can be extracted 

from the 3-item groups. As can be observed in Table 4, the 

most frequent event group is {600914, 6413, 601011}, with 

support 0.246, which indicates that the events {600914, 

6413, 601011} will occur within 10 minutes with 

probability 0.246. Table 5 presents the strong association 

rules that have confidence larger than 0.7. As can be 

observed in Table 5, the most significant rule is {601011, 

6413} 600914, with confidence 0.946, which implies that 

given that event {601011, 6413} occur, event 600914 will 

occur within 10 minutes with the probability 0.946. 

 

 

In addition, it is interesting to find out how the number of 

frequent event groups and strong association rules vary with 

the time interval. Figure 1 shows the result for the case 

where the minimal support threshold and minimal 

confidence threshold is set as 0.1 and 0.9. It is quite obvious 

that both the number of frequent event groups and strong 

association rules increase with time interval. Moreover, we 

plot in Figure 2 the relationship between the number of 

strong association rules and the minimal support threshold. 

Clearly the number of strong association rules decreases 

with the minimal support threshold. 

 

 

 

Figure 1. Number of frequent event groups and strong 

association rules with different time intervals. 
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Table 3. List of 10 most frequent events. 

 

Event code Description 

600914 Fluid feed coupling FS1 not 

tightened 

6413 Channel 1 Tool 

601114 Gear reduction of the main 

spindle is active 

601011 Cutter spindle FS1 not in OFF 

state 

700454 Tool changer holder on the 

non-closed machining space 

27006 Axis external pulse erase test 

in progress 

27002 Axis stop test in progress 

700205 Hydraulic oil overtemperature 

weight balancing 

510012 Non-compliant mode of 

operation 

300951 Axis stop drive test in 

progress 

 

Table 4. List of frequent event groups for 10-minute 

transactional data. 

 

Event group  Support 

700454, 600914, 6413 0.204 

600914, 6413, 601011 0.246 

700454, 600914, 601011 0.176 

700454, 6413, 601011 0.159 

 

Table 5. List of strong association rules for 10-minute 

transactional data. 

 

Antecedents  Consequents Confidence  

600914 601011 0.709 

601011 600914 0.9 

601011 6413 0.766 

700454 600914 0.858 

600914 6413 0.767 

700454 6413 0.792 

700454, 600914 6413 0.835 

700454, 6413 600914 0.903 

700454, 6413 6413, 

600914 

0.716 

600914, 601011 6413 0.805 

600914, 6413 601011 0.744 

601011, 6413 600914 0.946 

601011 6413, 

600914 

0.724 

700454, 600914 601011 0.719 

700454, 601011 600914 0.935 

700454, 601011 6413 0.846 

700454, 6413 601011 0.704 
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Figure 2. Number of frequent event groups and strong 

association rules with different time intervals. 

 

5. CONCLUSION 

In this study, we investigate the prognostic and health 

management of a manufacturing machine with discrete 

event data. Data mining approaches are applied to discover 

frequent event groups and strong association rules. The 

association rules are obtained with industrial data from a 

manufacturing company, which can serve as an precursor 

for abnornal events. Preventivre mainenance actions can be 

effectively implemented upon observing the precursor 

events so as to prevent system failure, which contributes to 

the machine prognostics and health management.  

Future research can be conducted in the following 

directions. The discovered association rules can be 

incorporated into failure prediction, combined with 

continuous monitoring. A combination of continuous 

observation and discrete event data contributes to a more 

accurate failure prediction. The associated events can be 

treated as abrupt changes of the system states and carefully 

embedded within a degradation model (e.g., covariates in 

Cox proportional hazards model).  
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