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ABSTRACT 

Predictive maintenance approaches leveraging integrated 

knowledge, fleet-wide data and machine-learning techniques 

allow for earlier warnings on impeding failures and for higher 

accuracy in remaining useful life predictions compared with 

traditional maintenance strategies. However, in case relative 

to correctly predicted maintenance needs, missed detections 

or false alarms occur too often, benefits can be outweighed 

by follow-up costs due to unexpected damage or unnecessary 

inspections. For business case evaluation, we demonstrate the 

value of a general approach to cost-benefit analysis based on 

the Receiver Operating Characteristics (ROC) curve. It 

allows for deducing application-specific requirements on 

prediction quality for achieving a net benefit and for 

comparing and optimizing failure prediction algorithms 

regarding cost-efficiency. As example of use, the approach is 

applied within aircraft engine maintenance to assess 

potentials for reducing unscheduled engine removals by more 

accurate prediction of turbine blade failures. Based on 

realistic, literature-based assumptions on various costs, 

failure probability and algorithm performance, maximal cost-

saving potentials of up to 17 Mio $ are found per mature-run, 

widebody engine and per mean-time between removals. The 

machine-learning based fusion of a pure physics-of-failure 

model with relevant data, e.g. pertaining to environment and 

inspection, is shown to allow for an up to 42% higher cost 

benefit, demonstrating the value of data for predictive 

maintenance purposes. Generalizations of the presented 

approach, e.g. to cost-optimize engine workscope planning or 

other system maintenance, are discussed. 

1. INTRODUCTION 

One of the general expectations of Prognostics and Health 

Management is the translation of raw data related to the 

health state of engineering systems into actionable 

information to facilitate rapid and informed maintenance 

decision making.  

Within the last decades, several new methods for prognostics 

and for assessing the performance of predictions for health 

management have been developed (Saxena, Sankararaman, 

& Goebel, 2014). Lately, e.g. in aeronautics, approaches are 

investigated that leverage integrated knowledge and fleet-

wide data of various sources to reduce uncertainties related 

to modeling of systems, and the impacts of usage profiles, 

operating environments and Maintenance, Repair and 

Overhaul (MRO) actions such as on asset health state, 

degradation rate and performance. Capturing complex 

relationships in the data that may be difficult to describe 

using physics, allows for earlier warnings on impeding 

failures and for higher accuracy in remaining useful life 

predictions (Saxena et al., 2014; Wagner, Saalmann, & 

Hellingrath, 2016).  

Yet, not all use cases are economically favorable for 

approaches relying on predictive analytics. Qualification 

criteria of business problems involve sufficient high-quality 

data and business needs, the latter arising from a significant 

influence of particular failure modes of components or (sub) 

systems of an asset on reliability, availability, installation or 

maintenance effort or operational costs. Moreover, 

importantly, for achieving a net average benefit compared to 

conventional strategies like preventive maintenance, 

application-specific requirements on predictive algorithm 

performance as well as on maximally allowed overhead costs 

such as for development, implementation and maintenance of 

the predictive analytics solution arise that have to be met for 

economic viability.  

As key performance measure of predictive algorithms, the 

Receiver Operating Characteristics (ROC) curve, discussed 

in more detail in the next section, indicates all possible 

combinations of relative occurrences of various kinds of 

correct and incorrect predictions (Metz, 2018). It can be 

directly linked to cost-benefit analysis of diagnostics- / 

prognostics-based decision-making, allowing for 

determining the optimal compromise among various kinds of 

prediction errors and finally, for business case identification. 

While ROC curves provide a common basis to medical 

decision making (Metz, 2018), and in recent years have been 

increasingly adopted in the machine learning and data mining 
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research communities, their natural relation to cost-benefit 

analysis is not commonly exploited for business case 

evaluation with regards to predictive maintenance potentials 

in engineering disciplines like Prognostics and Health 

Management.  

It is the aim of this paper to highlight the value of the ROC-

based approach in a) evaluating, comparing and optimizing 

predictive algorithm performance and b) for business case 

analysis specifically for aeronautical applications such as for 

optimizing engine maintenance expenses.  

In section 2, some general conclusions are drawn resulting 

from accounting for costs of the predictive maintenance 

solution itself as well as for those resulting from decisions / 

actions taken on its basis including the negative effects of 

false alarms (e.g. inspection maintenance event, delays) and 

missed detections (leading e.g. to failures, cascading effects, 

delays / cancellations). Section 3 concerns with a meaningful 

application case of ROC-based cost-benefit analysis for 

determining cost saving potentials of various failure 

prediction algorithms regarding unscheduled engine 

removals. Finally, in section 4 we conclude and provide an 

outlook on future work in section 5.  

Besides giving a practical guide for assessing the economic 

value of research approaches in failure prediction, this study 

is meant to give directions for industry decision making. 

2. ROC-CURVE AND COST-BENEFIT ANALYSIS 

As mentioned in the introduction, for a binary classification 

problem (true / false), there are four potential outcomes 

1. Predicted as ‘true’, actual value is ‘true’, i.e. a ‘True 

Positive’ TP 

2. Predicted as ‘true’, actual value is ‘false’, i.e. a 

‘False Positive’ FP 

3. Predicted as ‘false’, actual value is ‘false’, i.e. a 

‘True Negative’ TN 

4. Predicted as ‘false’, actual value is ‘true’, i.e. a 

‘False Negative’ FN 

Actual Positives P and Negatives N are hence respectively 

given by the sum of TP and FN as well as TN and FP. This 

leads to the definition of  

True Positive Rate 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
, 

False Positive Rate 𝐹𝑃𝑅 =
𝐹𝑃

𝑁
, 

True Negative Rate 𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅, 

False Negative Rate 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 

(1) 

  

Note that of the four rates only two are independent such that 

all rates may be expressed in terms of TPR and FPR. 

Accordingly, when applied to failure prediction, for instance 

within a predefined time-window, this is associated with the 

following outcomes  

1. Correct failure prediction: avoiding a potential 

unscheduled maintenance event and possible 

contingency damage costs due to cascading 

effects, allowing for timely planning of 

necessary MRO actions with estimated RUL as 

latest due date 

2. False alarm: an impending failure is indicated, 

even though no failure is impending or it is 

reported early leading to unnecessary 

inspection costs / potential labor and logistic 

costs associated with component or system 

replacement for testing and resulting costs 

associated with Aircraft On Ground (AOG)  

3. Correct prediction of normal operation, no 

positive or negative cost impact 

4. Missed detection / failure: impending failure is 

not predicted or predicted late. In practice, the 

same consequence as a failure not covered by 

the prediction system leading to a potential 

unscheduled event, possible contingency 

damage costs, potential labor and logistic costs 

associated with component or system 

replacement and AOG-related costs  

Typically, a failure prediction algorithm would associate 

each prediction with some instance probability or score (btw. 

0 and 1) (Metz, 1978). Regarding positive (negative) 

predictions, the closer the score is to 1 (0), the higher is the 

algorithm’s confidence in this classification result. In order 

to produce a discrete classifier output, it becomes evident that 

the operator has the freedom of choosing a decision threshold 

above / below which the prediction is rated as positive (i.e. 

failure, to the right of the threshold) / negative (i.e. normal 

operation, to the left of the threshold) (cf. Figure 1). Taking 

besides the two choices presented in the figure, all possible 

combinations of relative occurrences of correct / incorrect 

outcomes of the prediction (that are evaluated as such by later 

inspection of actual conditions of monitored components or 

systems) allows for the construction of the so-called Receiver 

Operating Characteristics (ROC) curve. Here, each point on 

the ROC curve corresponds to a different choice of 

classification threshold and subsequent evaluation of the 

relative occurrences of incorrect and correct predictions. 

Here, the ROC-curve is a key algorithm-specific performance 

measure (cf. Figure 2a)) (Metz, 1978) that enables evaluating 

the trade-off between FPR and TPR. 

A measure for the algorithm’s discriminability between 

positive and negative instances is given by the Area Under 

Curve (AUC). Minimal AUC corresponds to that of a random 

classification (i.e. 𝐴𝑈𝐶 = 0.5), and maximal AUC to that of 

a perfect classifier (i.e. 𝐴𝑈𝐶 = 1), allowing for an operating  
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point on the ROC curve only associated with benefits 

(𝑇𝑃𝑅 = 1)and no penalties (𝐹𝑃𝑅 = 0) (cf. Figure 2a)) 

(Metz, 1978). 

Considering that the ROC curve captures all possible 

combinations of correct / incorrect predictions, each of which 

is associated with specific actions / follow-up costs, the 

natural connection between the ROC-curve and cost-benefit 

analysis becomes apparent. The task is to find the optimal 

operating point on a ROC-curve that is associated with the 

best cost-benefit balance, promoting this choice to an 

application-specific business decision.  

As concerns the average costs C for all possible prediction 

outcomes, these are given by (Metz, 1978) 

    𝐶 = 𝐶0 + 𝐶𝑇𝑃 ∙ 𝑝(𝑇𝑃) + 𝐶𝐹𝑃 ∙ 𝑝(𝐹𝑃) 
 + 𝐶𝐹𝑁 ∙ 𝑝(𝐹𝑁) + 𝐶𝑇𝑁 ∙ 𝑝(𝑇𝑁), 

(2) 

  

where C0 summarizes overhead costs associated with the 

predictive maintenance solution (e.g. development, 

implementation and maintenance costs) and the other 

summands correspond to the average costs of each type of the 

four possible predictions, i.e. respectively, the costs of the 

prediction consequence, multiplied by the probability that 

this prediction occurs. Since true negative predictions (i.e. 

predictions of normal operation) are not associated with 

specific actions / follow-up costs (𝐶𝑇𝑁 = 0), the last term 

vanishes. Furthermore, for instance 𝑝(𝑇𝑃) corresponds to the 

occurrence probability of the failure mode 𝑝𝑓𝑎𝑖𝑙  multiplied by 

the probability that an actual failure will be predicted as such 

(i.e. TPR) such that 𝑝(𝑇𝑃) = 𝑝𝑓𝑎𝑖𝑙 ∙ 𝑇𝑃𝑅. Similarly, it is 

𝑝(𝐹𝑃) = 𝑝𝑛𝑜 ∙ 𝐹𝑃𝑅, 𝑝(𝐹𝑁) = 𝑝𝑓𝑎𝑖𝑙 ∙ (1 − 𝑇𝑃𝑅) and 

𝑝(𝑇𝑁) = 𝑝𝑛𝑜 ∙ (1 − 𝐹𝑃𝑅), where 𝑝𝑛𝑜 denotes the probability 

for normal operation. 

The maximally achievable net benefit NBmax due to failure 

prediction results from the difference in conventional costs 

Cref  (without the specific failure prediction algorithm) and 

Cmin, the minimal value of the cost function C, 

𝑁𝐵𝑚𝑎𝑥 = 𝐶𝑟𝑒𝑓−𝐶𝑚𝑖𝑛 (3) 

  

Accordingly, from analyzing the net benefit e.g. as a function 

of prediction error (FPR), the optimal operating point can be 

found as that leading to the maximally achievable value of 

the net benefit, NBmax.  

In Figure 2b), an exemplary calculation of the relative net 

benefit as a function of prediction error (FPR) is shown, 

which assumes fixed follow-up costs for all possible 

prediction outcomes according to Eq. (2), the same prediction 

quality (cf. ROC-curve in Figure 2a)), but varying occurrence 

probability of a failure mode. Compared with the benefit due 

to correct failure prediction (TP), fairly high cost penalties 

are assumed for FPs and FNs. The reference is chosen such 

that  

𝐶𝑟𝑒𝑓 = 𝐶𝑓𝑎𝑖𝑙 ∙ 𝑝𝑓𝑎𝑖𝑙, (4) 

  

where 𝐶𝑓𝑎𝑖𝑙 = 𝐶𝐹𝑁 and 𝑝𝑓𝑎𝑖𝑙 = (𝑝(𝑇𝑃) + 𝑝(𝐹𝑁)). This case 

may be interpreted as typical for corrective maintenance, 

where failed equipment is typically only restored after a 

damage has occurred. Accordingly, the associated costs 

correspond to those arising from missed detections, 𝐶𝐹𝑁, i.e. 

from unexpected damage for a system with failure prediction. 

This case is chosen for simplicity, since here a direct relation 

 
Figure 1. Distributions of actual positives (solid) and negatives (dashed) as a function of score with a) a rather strict 

decision threshold (dotted) leading to fairly low FPR and TPR and b) a rather lax decision threshold leading to fairly 

large FPR and TPR.  

 

a)                                                                                                             b) 
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exists between the parameters specifying the costs with 

failure prediction and without (i.e., the reference). 

It becomes apparent from Figure 2 that the net benefit 

achievable with the same ROC-curve is application specific: 

while for a semi-frequent and for an often-occurring failure 

mode, a business case is given for failure prediction 

irrespective of the prediction quality, for a rare failure mode, 

σ denotes the economically viable range of FPR. 

Furthermore, it becomes apparent that the choice of operating 

point is a business decision. Its optimal value minimizes costs 

due to prediction errors and maximizes benefits resulting 

from correct predictions e.g. of impending failures of 

components or (sub-)systems. For decreasing failure 

occurrence probability, the optimal operating point on the 

ROC curve (solution to Eq. (3)) moves to lower values of 

FPR and TPR (cf. Figure 2). This means here, a strict decision 

threshold is most favorable, while respectively a medium and 

lax threshold are best for medium and high failure occurrence 

probability. This is related with the fact that in case a failure 

mode is rare, almost all positive predictions will be false 

positive. Due to the assumed large cost penalties arising from 

false positive predictions, this implies that NBmax is associated 

with smaller values of FPR and hence also of TPR for lower 

failure event rate. Since in comparison, costs benefits due to 

correctly predicted failures occur less often and furthermore, 

lower values of TPR tend to enhance the negative effect of 

FNs (cf. Eq. (2)), the achievable overall relative benefit 

decreases with failure occurrences probability. 

Some (further) general conclusions from ROC-based cost-

benefit analysis may be drawn: 

 In particular for rather poor prediction quality, the 

choice of a strict / lax threshold is not only beneficial 

for (Metz, 1978) a rare / often failure mode, but also 

for  

 𝐶𝐹𝑃 ≫ 𝐶𝐹𝑁−𝐶𝑇𝑃 / 𝐶𝐹𝑃 ≪ 𝐶𝐹𝑁−𝐶𝑇𝑃 , i.e., e.g. if 

failure prediction is of little benefit, but false alarms 

are very costly / if costs of actual failure resulting 

from a missed detection (e.g. due to cascading 

effects) are much larger than costs for timely 

maintenance / repair before actual failure occurs 

 If conventionally, costs for unscheduled 

maintenance are comparatively high / low, 

allowable prediction error / overhead costs are 

comparatively high / low as well. 

 Overall costs may increase, despite of good 

algorithm performance, if overhead costs C0 are too 

high  

3. APPLICATION EXAMPLE: ENGINE MAINTENANCE 

Over its service lifetime, the majority of an aircraft’s 

maintenance exposure arises from three main areas: airframe, 

engine and components. Making up a significant contribution 

of about 30-40% of the total maintenance expenses, 

expenditures arising from the engine exhibit an important 

impact on the market value of the whole aircraft at any given 

time (Ackert, 2011). 

Regarding engine maintenance practices in aeronautics, there 

has been a shift in industry from fixed maintenance intervals 

towards engine on-condition monitoring. The aim is to 

remove engines only when internal components reach their 

individual life limits, or performance monitoring indicates 

 
Figure 2 a) The ROC curve can be directly related to b) cost-benefit analysis of predictive analytics for specific business 

problems allowing for algorithm performance evaluation, optimization and finally, for identification of business cases 

with net relative benefit.  
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operation outside of parameter values suggested by 

manufacturers (Ackert, 2011). 

In support of this paradigm, the ability has been improving of 

accurately predicting the time to failure (or Remaining Useful 

Life (RUL)) of various components. In particular, this 

enables engine removal from service for repair and/or 

refurbishment before secondary damage may result from 

failed parts. The further development of this capability is in 

particular in demand for failures of hot section components 

such as turbine blades, nozzels, rotor or combustor 

components that can induce high economical penalties 

arising both from turbine downtimes and from potential 

cascading effects inducing high down-stream damage costs 

(Pillai, Kaushik, Bhavikatti, Roy & Kumar, 2016).  

Various factors such as operating conditions, specific 

material and manufacturing characteristics or environmental 

conditions can significantly influence the lifetime of 

components and are partly difficult to incorporate in a physics 

framework. Correspondingly, Pillai et al. (2016) firstly 

exploited a physics-based damage accumulation model based 

on Computational Fluid Dynamics (CFD) and Finite Element 

(FE) simulations that translates turbine operation data into the 

probability of failure of the considered components (by 

comparing estimated damage with a damage threshold 

expected to lead to a failure). Then, they fused the latter with 

data e.g. on manufacturing, geography and environment as 

well as customer and inspection information by means of 

machine learning techniques. This hybrid approach has been 

shown to allow for significantly improving predictive 

capability in failure detection of turbine blades e.g. regarding 

creep-driven cracking. This is manifested in a 60% increase 

in AUC of the respective ROC-curves for failure prediction 

of the hybrid physics-/data-based compared to the pure 

physics-based approach (Pillai et al., 2016). 

In the following, it is demonstrated that ROC-based cost-

benefit analysis can be applied to evaluate cost reduction 

potentials of such predictive approaches with regards to 

Unscheduled Engine Removal (UER) in dependence on the 

achievable failure prediction quality (as measured by the 

corresponding ROC-curve, cf. section 2). Possible extension 

of the approach to further optimize engine workscope 

planning e.g. with regards to maximizing time-on wing or 

minimizing the number of shop visits will be discussed in 

section 0. 

3.1. Potential Analysis for Reducing Unscheduled 

Engine Maintenance Costs: ROC-based Approach 

With the aim of assessing cost reduction potentials regarding 

UER based on failure prediction and the ROC-based 

approach outlined in section 2, in the next section the stage 

will be set for deriving quantitative results in section 3.1.2. 

3.1.1. Setting the stage for ROC-based Cost-benefit 

Analysis 

In general, the Shop Visit Rate (SVR) of an engine may be 

broken into the scheduled removal rate (e.g. resulting from 

expiry of Life-Limited Parts (LLPs), performance 

deterioration and service bulletin compliance) and 

unscheduled removal rate. The latter measures the number of 

times unexpected engine anomalies or failures require engine 

removal for repair or refurbishment before normal 

maintenance intervals are reached (Ackert, 2012). This 

causes a shop maintenance event with associated Shop Visit 

Costs SVCs and the necessity of installing an airworthy (new 

or repaired) engine.  

The reciprocal of the total SVR is the engine’s Mean-Time-

Between Removals MTBR, another important reliability 

metric (Ackert, 2015). 

As discussed in section 2, unexpected maintenance is more 

expensive than scheduled MRO actions based on knowledge 

of an impending failure. Besides potential Contingency 

Damage Costs CDC, Logistic Costs LC increase, if the engine 

needs to be replaced outside of the base owing to an in-

service failure (Batalha, 2012). Here, one can discriminate 

two cases associated with decreasing occurrence 

probabilities, but increasing severity of economical penalties: 

 On-ground occurrence or detection of engine failure 

with probability pg and logistic costs LCg  

 In-flight occurrence of failure with probability 𝑝𝑓 <

𝑝𝑔  and logistic costs 𝐿𝐶𝑓 > 𝐿𝐶𝑔 due to potential 

engine In Flight Shut-Down (IFSD) that may cause 

the necessity to replace the engine in an alternate 

airport (Batalha, 2012). 

Adding to this, in general, unexpected AOG is associated 

with a contribution loss CL (revenue-variable costs) (Batalha, 

2012). 

Assuming the UER event EUER to happen with a certain event 

rate λUER per 1000 FH that is (roughly) constant, but 

completely at random, gives a Poisson process with 

probability pUER growing as a function of time t (Batalha, 

2012): 

𝑝𝑈𝐸𝑅 = 𝜆𝑈𝐸𝑅𝑡𝑒−𝜆𝑈𝐸𝑅𝑡    (5) 

  

With conditional probability 𝑝𝑓 = 𝑝(𝐸𝑈𝐸𝑅│𝐸𝑓) the engine 

failure is an in-flight event Ef. For a (roughly) constant in-

flight occurrence rate 𝜆𝑓  this yields (Batalha, 2012) 

  

𝑝𝑓 =
𝜆𝑓𝑡𝑒−𝜆𝑓𝑡

𝑝𝑈𝐸𝑅

 
(6) 

  

In Figure 3, a schematic representation of all possible events 

with / without failure prediction with the associated follow-

up costs and occurrence probabilities is given (cf. section 2 
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for the discussion of occurrence probabilities of all possible 

correct / incorrect predictions). Note that with failure 

prediction, the only source of UERs is provided by FN 

predictions. These, however, occur with a factor of 

(1 − 𝑇𝑃𝑅)−1 lower probability than in the reference 

scenario. As concerns FP failure predictions, the severity of 

cost-penalties strongly depends on whether line inspections 

with comparatively low Inspection Costs ICs suffice for 

revealing them (e.g. excluding safety-critical crack-growth 

by borescope inspections) or whether the necessity of engine 

removal (potentially outside of the base with additional 

logistic costs depending on the determined RUL) and 

subsequent shop visit arises. 

Engine removal causes are generally highly dependent on 

type of operation. In the following, a focus is placed on 

widebody engines and events caused by High Pressure 

Turbine (HPT) components such as HPT stage 1 and stage 2 

blades. Creep is an important type of time-dependent 

degradation mechanism of turbine blades, while not being the 

only one (Pillai et al., 2016). Given the exploratory nature of 

this work and for the purpose of concreteness, the 

corresponding achievable prediction quality of creep-induced 

cracking of turbine blades presented by Pillai et al. (2016) is 

taken as representative for the prediction of HPT blade 

failures in the following. Refinements to this approach are 

left for future work.  

Overhead costs for failure prediction (cf. section 2) are 

neglected in this study. Clearly, for economic viability, an 

upper limit will be given by the achievable net benefit of 

failure prediction.  

Furthermore, as a reference, mature-run, widebody engines 

are considered, where the SVR can be taken to be stabilized 

(Ackert, 2012). Based on these assumptions, literature results 

elaborated on in the following will be used for specifying the 

corresponding typical UER rates and related follow-up costs 

necessary to quantitatively perform a ROC-based cost-

benefit analysis as outlined in section 2. A collection of 

representative, literature-based values for various cost factors 

mentioned in Figure 3 can be found in Table 1. 

 

Here, a typical cost split into 60-70% material costs, 20-30% 

labor costs and 10-20% repair costs (Ackert, 2015) has been 

assumed to estimate the respective SVCs for turbine failures 

as well as ICs potentially associated with FPs. Furthermore, 

the estimate of CLg/f  assumes a contribution loss of 14 FH 

per day and respectively 5 and 7 days AOG for engine 

replacement after on-ground and in-flight failure (Batalha, 

2012).  

Table 1. Various sources of costs with values based on 

Batalha (2012) for in-service engine removal due to 

on-ground / in-flight failure.  

 

Costs  
Estimates 

[k $] 

SVCg/f  Shop visit costs after on-ground / in-

flight failure 
12-120 

Potential contingency damage costs CDCf 

due to in-flight failure 
500 

Potential (line) inspection costs IC due to a 

false alarm (FP) 
0.2 

SVCFP potential SVCs due to a false alarm 

(FP)  
2 

LCg/f  Logistic costs to replace an engine 

outside the base due to on-ground / in-flight 

failure (e.g. at alternate airport due to IFSD)  

100 / 250 

CLg/f loss of contribution (revenue – variable 

costs) during AOG time due to on-ground / 

in-flight engine failure 

266 / 372 

 

 
Figure 3. Schematic representation of all possibilities of events with (potential) associated follow-up costs and 

occurrence probabilities for a) the reference and b) the failure prediction scenario. 
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Typically, for the considered failure mode, the failure rate 

would grow with the number of flight hours since the 

component has come into service or since last repair. 

However, as will be demonstrated in section 3.1.2, the net 

average benefit depends only mildly on variations in the 

event rate for sensible parameter ranges.  

Typical event rates for UER caused by turbine blades in 

different stages after last shop visit (respectively, after a 

couple of years in operation as well as soon after coming into 

service / after repair) are extracted from Ackert (2012) for a 

widebody engine. Respectively, they take values of 3.6 10-3 

and 7.0 10-4 per 1000 FH for HPT stage 1 blades as well as 

1.2 10-3 and 3.0 10-4, per 1000 FH for HPT stage 2 blades. In 

total, this respectively amounts to 17 % as well as 6% of the 

total UER rate, which has a typical value of 0.026 per 1000 

FH for a mature-run, widebody engine (Ackert, 2012). The 

total SVR amounts to 0.032 per 1000 FH, corresponding to a 

MTBR of 31,250 FH. Furthermore, the total IFSD rate is 

about 5 10-3 per 1000 FH (Batalha, 2012). 

Based on the parameter presented in this section, a sensitivity 

analysis will be performed in the next section, in order to 

single out the most important contributions influencing the 

achievable net average benefit resulting from the prediction 

of turbine failures.   
3.1.2. Results: ROC-based Cost-Benefit Analysis 

This section demonstrates the value of ROC-based cost-

benefit analysis for assessing cost-reduction potentials 

regarding unscheduled engine removals (UER) achievable by 

means of failure prediction algorithms. In general, their 

influence on the relative benefit in relation to the reference 

without UER failure prediction depends on  

 Event rates and corresponding failure probabilities 

as analyzed by varying event rates for mature-run, 

widebody engines within sensible limits (cf. the last 

section) and by considering the time dependence 

according to Eqs.   (5) – (6) 

 Various costs associated with all possible cases with 

and without failure prediction (cf. Figure 3) as 

analyzed by a variation of those costs within 

sensible limits 

 Relative occurrence of all possible correct and 

incorrect predictions as analyzed by varying the 

operating point on the considered ROC curves 

 Prediction quality as analyzed by considering three 

different ROC curves (cf. Figure 4), two of which 

correspond to those achievable for creep-induced 

turbine blade failures deduced in Pillai et. al (2016) 

(hybrid approach fusing physic and data (LASSO 

model) as well as pure physics-based approach, 

respectively). The better of the two is approximated 

by a continuous function (referred to as ROC 1) that 

is considered first for cost-benefit analysis. 

 to as ROC 1) that is considered first for cost-benefit 

analysis. 

 

Figure 4: Considered ROC curves for failure prediction, 

ROC2 and ROC3 respectively corresponding to a hybrid 

physics-/data-based as well as pure physics-based approach 

(Pillai et al., 2016).  

Key results of the analysis are subsequently presented. These 

emerge from using Eqs. (2) – (3), the costs specified 

according to Figure 3, the failure occurrence probabilities 

according to Eqs. (4) –    (5) as well as realistic (ranges of) 

parameters discussed in section 3.1.1.  

In Figure 5, for various cost scenarios, the relative net benefit 

achievable by the prediction of turbine blade failures (with 

performance according to ROC 1) compared with the 

reference (no UER failure prediction) is shown as a function 

of FPR (i.e. representing all possible operating points on the 

ROC-curve). 

Here, a fixed failure rate of 17% of the total unscheduled 

events rate is assumed. For a widebody aircraft, this event 

rate is typical for events caused by HPT 1st and 2nd stage 

turbine blades a couple of years after last shop visit (cf. the 

discussion in the last section). As demonstrated by Eqs.    (5) 

– (6), for fixed event rate the probability of occurrence of an 

unscheduled event grows with flight hours, e.g. since last 

shop visit. In Figure 5, this effect is taken into account by 

integrating over flight time with 𝑇𝑚𝑖𝑛 = 0 and 𝑇𝑚𝑎𝑥 =
𝑀𝑇𝐵𝑅. This approach allows determining the optimal 

operating point on the ROC curve (i.e. the most cost-efficient 

relative occurrence of TP and FP for ROC 1) for the 

respective scenarios considered. It turns out to exhibit little 

dependence on time for the considered scenarios. Thereafter, 

the influence of growing failure probability with time will be  
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Figure 5. Impact of various cost terms on relative net benefit 

achievable per widebody engine per MTBRs.  

analyzed for the respective optimal operating points on the 

ROC-curve that are roughly constant with time. One observes 

from Figure 5 that for all cost scenarios a business case for 

failure prediction emerges, since the relative net benefit is 

positive irrespective of the choice of the decision threshold 

(i.e. for all possible combinations of FPR and TPR). 

Furthermore the achievable relative net benefit increases both 

with shop visit costs SVC and contingency damage costs 

CDC, since both tend to increase reference costs and hence 

make failure predictions more valuable. 

Yet, if false positive predictions are assumed to always 

require an engine removal, then for fixed prediction quality, 

the relative net benefit will decrease with the resulting AOG 

costs. 

In contrast, if line inspections would suffice to detect false 

positive failure predictions without requiring engine 

removals, then the achievable relative net benefit would be 

superior to all other cases, reaching values as high as almost 

100% for 𝐹𝑃𝑅 = 1 and 𝑇𝑃𝑅 = 1. Since in this case, false 

positive predictions are not associated with large follow-up 

costs, here, the penalties associated with incorrect predictions 

mainly arise from missed detections (i.e. false negatives). 

However, their relative occurrence probability decreases with 

increasing TPR. Hence, since choosing an operating point on 

the ROC curve with 𝐹𝑃𝑅 = 1 allows for high 𝑇𝑃𝑅 = 1, this 

explains why a large relative benefit is achievable compared 

to the reference. The respective maximally achievable 

relative net benefit for the six considered scenarios is 

summarized in Table 2 together with the corresponding 

optimal operating point on the ROC curve. While some of the 

scenarios where chosen in order to demonstrate the influence 

of the various costs terms, scenarios 3), 5) and 6) are 

considered as meaningful options that will be further pursued 

in the following.  

As mentioned before, the failure rate for the considered 

failure mode would typical increase with flight time since last 

shop visit. In the following, this effect is demonstrated to 

have little to hardly any impact on the achievable relative net 

benefit for the meaningful cost scenarios.  

  
For this purpose, the influence of varying the failure rate (i.e. 

occurrence probability of the considered failure mode) is 

analyzed respectively for cost scenarios 3) and 6) (cf. Table 

2), while apart from the failure probability all other 

parameters are kept fixed. 

Typical fractions of the total unscheduled event rate in 

different stages after last shop visit are considered (cf. the 

discussion in the last section). Furthermore, as an upper limit 

on the specific event rate of the considered failure mode, the 

total unscheduled event rate is taken accounting for all 

possible failure causes. Moreover, as above, two extreme 

cases regarding the costs associated with false alarms are 

considered: firstly assuming the necessity of engine removal 

and subsequent shop visit (i.e. scenario 3)), secondly 

assuming that all false positive failure predictions are 

discovered e.g. by borescope inspections, while the aircraft is 

on ground (i.e. scenario 6)).  

In general, follow-up costs associated with false positive 

predictions grow in proportion to (1-pUER), FPR and the 

corresponding cost penalty (cf. Eq. (2)). 

From Figure 6, it becomes evident that in the first case, the 

maximally achievable relative net benefit in relation to the 

reference varies only slightly with failure occurrence 

probability in the full range of conceivable probabilities, 

taking values between maximally 78 % (lowest assumed 

event probability) and 82 % (highest assumed probability).  

Table 2. Optimization of relative net benefit (cf. 

Figure 5 and Table 1). 

 
Scenario Optimized 

relative  

net benefit 

[%] 

Optimized 

FPR, TPR 

1) Low SVC, no 

CDC, no CL 
78.00 0.23, 0.94 

2) Low SVC, CDC, 

no CL 
78.46 0.20, 0.91 

3) Low SVC, CDC, 

CL 
78.85 0.23, 0.94 

4) High SVC, no 

CDC, no CL 
80.68 0.26, 0.95 

5) Low SVC, no 

CDC, CL 
80.28 0.24, 0.95 

6) Low SVC, CDC, 

no CL for FP 
99.6 1.00, 1.00  
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Figure 6. Impact of event rate on relative net benefit within 

MTBRs for scenario 3) as specified by Table 1 – Table 2. 

 

Furthermore, the optimal operating point on the ROC curve 

moves to lower values of FPR and TPR for decreasing failure 

occurrence probability. The reason is that if a failure mode is 

rare, almost all positive predictions will be false positive. 

Owing to the assumed large cost penalties arising from false 

positive predictions causing engine removal and associated 

downtime, this implies that the tolerable FPR-rate decreases 

with the failure event rate at the dispense of also decreasing  

TPR. In total, the positive effect of true positive predictions 

is less frequently coming into play for reduced event rates and 

furthermore, lower values of TPR tend to enhance the 

negative effect of missed detections (cf. Eq. (2)) such that the 

overall relative benefit decreases in comparison to that of 

larger event rates.  

In the second case, the situation is quite different. Here 

varying the failure event rate has hardly any impact on the 

achievable relative benefit and for the whole spectrum of 

chosen event rates an operating point on the ROC curve with 

𝐹𝑃𝑅 = 1 and 𝑇𝑃𝑅 = 1 is optimal. Clearly, this is due to the 

fact that false alarms lead to fairly negligible cost penalties 

such that a high FPR can be tolerated, correspondingly 

leading to a high TPR that minimizes the occurrence of 

missed detections (i.e. FNs) and their cost penalties and 

optimizes the achievable benefit due to true positive 

predictions. Thereby, almost independent of event rate, a net 

relative benefit of 100% is achievable.  

In the following, the event rate is kept fixed at a typical value 

of 17% of the total UER rate (Ackert, 2011), while the failure 

prediction performance is varied. For this purpose, all ROC 

curves in Figure 4 are considered. Here, the second and third 

ROC curves correspond to the best (hybrid physics- and data- 

  
Figure 7. Impact of event rate on relative net benefit within 

MTBRs for scenario 6) as specified by Table 1 – Table 2.  

 

based) and the worst (pure physics-based) cases respectively 

found in Pillai et al. (2016). Note that also for these ROC 

curves, it has been verified that the relative net benefit 

depends only mildly on deviations from the assumed typical 

event rate for HPT blade failures within sensible limits.  

For the meaningful scenarios 3), 5) and 6) (cf. Table 2), a 

comparison of the achievable (relative) net benefit for all 

three ROC curves as a function of prediction error (FPR) can 

be found in Figure 8 –Figure 10. In Figure 8a) – Figure 10a), 

similarly to the approach taken in the calculation for Figure 

5, it is assumed that 𝑇𝑚𝑖𝑛 = 0 and 𝑇𝑚𝑎𝑥 = 𝑀𝑇𝐵𝑅 for the time 

integration yielding the cumulative relative net benefit in 

dependence on the prediction error (FPR).  

In Figure 8b) – Figure 10b), for the optimal operating point 

of the respective ROC curves, the increase of the net benefit 

with time T in units of 1000 FH is plotted by integrating from 

𝑇𝑚𝑖𝑛 = 0 up to T, with 𝑇𝑚𝑎𝑥 = 𝑀𝑇𝐵𝑅. 

In particular, this calculation would turn out useful for 

optimizing shop visit intervals as it demonstrates the time 

dependence of the reduction potential of unscheduled engine 

removals for the considered failure mode. In addition, the 

respective optimal operating points and resulting values for 

the maximally achievable (relative) net benefit are 

summarized in Table 3. 

It becomes apparent that for cost scenarios 3) and 5) the 

results are qualitatively similar. First of all, the prediction 

performance as measured by the respective ROC curves, has 

a sizeable impact on the achievable net benefit. While the first 

and the second ROC curve for both cost scenarios allow for 

relative net benefit around 80% with somewhat larger values  
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Figure 8. Cost scenario 3), a) relative net benefit as a function of FPR and b) net benefit as a function of T.  

 
 

 
Figure 9. Cost scenario 5), a) relative net benefit as a function of FPR and b) net benefit as a function of T.  

 
 

 
Figure 10. Cost scenario 6), a) relative net benefit as a function of FPR and b) net benefit as a function of T. 

 

a)                                                                                                           b) 

a)                                                                                                           b) 

a)                                                                                                           b) 
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in scenario 5) compared to scenario 3), the third ROC curve 

(corresponding to the pure physics-based approach for failure 

prediction) only yields about 47% and 52%, respectively. 

As typical for a ROC curve with poor classification 

performance, there furthermore exists no cost optimum at low 

/ high values of FPR / TPR as in the other two cases with 

good ROC performance. 

Instead, the best operating point on ROC 3 lies at 𝐹𝑃𝑅 =
0.82 and 𝑇𝑃𝑅 = 1 for all cost scenarios. This corresponds to 

the case where the benefit due to true positive predictions is 

maximized and the negative cost impact of missed detections 

proportional to (1 − 𝑇𝑃𝑅) is minimized, but traded for a 

fairly high cost penalty due to large false alarm rate (i.e. 

FPR). For ROC 2, there exists a cost optimum at significantly 

smaller FPR of 0.28 in all scenarios, corresponding to a TPR 

of close to 1, leading to a factor of about 1.7 / 1.5 (scenario 

3) / 5)) higher optimal relative net benefit compared with that 

resulting from ROC 3.  

The corresponding cost saving potentials per MTBRs are 

with about 13.57 and 11.20 Mio. $ for the hybrid physics-

/data-based approach (corresponding to ROC 2) respectively 

about 5.75 Mio. $ (cost scenario 3)) and 4.18 Mio $ (cost 

scenario 5)) higher than the pure physics-based approach, 

impressively demonstrating the value of data for predictive 

maintenance purposes.  

Note that while the relative net savings in scenario 3) are 

somewhat lower than that in scenario 5), the net benefit is 

slightly higher. The reason is that the assumed large 

contingency damage costs in this case drive up the reference 

costs arising from UERs from 13.45 Mio $ (scenario 5)) to 

16.65 Mio. (scenario 3)) within MTBRs such that the relative 

net benefit in scenario 3) is somewhat lower than in scenario 

5) (cf. Table 3). The situation is quite different for scenario 

6) (cf .Figure 10). Here, due to the fact that false alarms are 

assumed to lead to comparatively low cost penalties, for all 

three ROC curves, the optimal operating point lies at 𝐹𝑃𝑅 =
1and 𝑇𝑃𝑅 = 1. Accordingly, fairly irrespective of prediction 

performance, a relative net benefit of about 100% can be 

achieved corresponding to a cost saving potential within 

MTBRs per widebody engine of 16.56 Mio. $ in all cases (cf. 

Table 3).  

4. CONCLUSIONS  

In this study, the value of ROC-based cost-benefit analysis 

for identifying and optimizing cost saving potentials 

associated with predictive maintenance applications was first 

generally discussed. The approach was thereafter applied to 

a representative use case within aircraft engine maintenance: 

potentials for reducing unscheduled engine removals by 

(more) accurate failure prediction were quantitatively 

assessed from an operator’s perspective, for realistic, 

literature-based ranges of costs, failure occurrence 

probabilities and algorithm performances. A focus was 

placed on events caused by turbine blade failures to make 

contact with literature results on the achievable prediction 

quality, considering both a pure physics-of-failure-based 

approach and a hybrid physics-/data-based one with superior 

prediction performance (Pillai et al., 2016).  

As a key result of this analysis, for sensible parameter ranges, 

the more accurate prediction of turbine blade failures was 

generally found to allow for significant cost savings. These 

extend up to roughly 17 Mio. $ per widebody engine and per 

MTBRs (i.e. a relative net benefit of 100% compared with 

current practice), neglecting any overhead costs for the 

failure prediction system itself. The highest parameter 

influence on the achievable net benefit was identified to stem 

from false alarms. Associated cost penalties can grow from 

comparatively low to high, in case for the identification of 

false positive failure predictions line (borecope) inspections 

do not suffice, but an engine removal and subsequent shop 

visit are required. If follow-up costs of false alarms are low, 

the net benefit of failure prediction is maximized (about 17 

Mio. $ per widebody engine and per MTBRs, cf. above) and 

turns out to be independent of prediction quality. However, 

for all other considered cost scenarios, the hybrid physics-

/data-based approach yielded a significantly higher net 

benefit than the pure physics-based one of up to about 42%. 

Accordingly, as a further key result of this study, the 

additional use of relevant data e.g. on environment and 

inspections, pertaining to factors that are not easily modeled 

using physics principles, was found to be worth up to about 6 

Mio. $ per widebody engine and per MTBRs. This 

quantitative result impressively demonstrates the value of 

data for predictive maintenance purposes. 

5. OUTLOOK 

While in this study, a focus was placed on the impact of 

turbine failure prediction on unscheduled engine removal, the 

approach may be extended to include that associated with 

other failure modes and to select the corresponding most cost-

efficient prediction algorithms. The results may be exploited 

Table 3. Optimized results for costs scenarios 3), 5) 

and 6). 

 
Cost 

scenario 

Prediction 

performance 

Costs 

reference 

[Mio. $] 

Optimized 

relative  

net benefit 

[%] 

Max. 

net 

benefit 

[Mio. $]  

3) ROC 1 16.65 78.90 13.13 

ROC 2 80.54 13.57 

ROC 3 47.04 7.83 

5) ROC 1 13.45 80.29 10.80 

ROC 2 83.29 11.20 

ROC 3 52.22 7.02 

6) ROC 1 16.65 99.50 16.56 

ROC 2 99.50 16.56 

ROC 3 99.50 16.56 
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in order to further optimize engine workscope planning e.g. 

with regards to maximizing time-on wing or minimizing the 

number of shop visits based on more accurate failure 

predictions. For instance, shop visit costs increase with time 

on wing due to deteriorating engine condition (Ackert, 2011). 

Yet, performing the shop visit at a later point in time e.g. may 

result in discounted cash flow savings (Batalha, 2012). 

Furthermore, in case a significant fraction of scheduled tasks 

may be eliminated by means of reliable failure prediction 

algorithms, the total workload and potentially also the 

downtime due to maintenance checks could be reduced. Here, 

a ROC-based cost-benefit approach allows for optimally 

trading all involved cost factors for optimized workscope 

planning in dependence on failure prediction quality.  

Finally, the approach may also be applied to assess cost-

saving potentials from failure prediction for aircraft systems 

other than the engine as investigated in on-going work. 
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