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ABSTRACT 

Datasets of historical performance metrics can offer valuable 

insight into an asset fleet’s health. This is especially so in the 

context to establishing normal behavior and thresholds of 

acceptable performance for diagnostic purposes. However, 

plant performance can often be obscured by data quality 

issues which introduce artefacts that do not pertain to asset 

health. This paper utilises a supervised ensemble machine-

learning approach to automate the process of filtering 

maintenance data based on their predicted validity. The 

results are then presented both in terms of classification 

performance, and the impact on the distributions directly. 

This helps to ensure engineers are basing their diagnostic 

decisions on valid data. The accuracy of the filtration process, 

and its effect on the final thresholds will be discussed. To 

illustrate, this paper uses data of varying quality on circuit 

breaker trip tests obtained from operational medium-voltage 

circuit-breakers spanning several decades with the aim of 

providing decision support for switchgear diagnostics. 

1. INTRODUCTION 

Medium-voltage circuit-breakers are used in the power 

industry to disconnect portions of the electricity network for 

reasons regarding safety, reliability, or efficiency. As such, a 

failure in their operation can lead to increased risks to health 

and profits, either through direct damage or punitive 

regulatory repercussions. From a consumer’s perspective, it 

can lead to poor power quality or even complete loss of 

supply. 

Many medium-voltage circuit-breakers deployed in the 

power network have expected life-spans exceeding several 

decades and are infrequently activated. This provides the 

opportunity for faults to develop unnoticed over time in 

between activations. These faults are then only encountered 

during an attempted activation, where the activation is either 

slower than permissible or fails to complete entirely. This can 

lead to catastrophic cascading failures if the activation was 

motivated by a time-critical change of state in the network, 

all whilst having afforded no opportunity for maintenance 

endeavours. 

In order to avoid such eventualities, circuit-breakers are 

tested routinely under safe conditions. Among these tests, is 

the analysis of trip-coil currents over an activation. By 

measuring the trip-coil current, it is possible to non-

invasively infer the circuit-breaker’s internal mechanism’s 

speed. It is consequently then possible to interpret the results 

to lead to a probable diagnosis. The theoretical basis for this 

has been well-documented (Harriezan, & Tiong, 2016), and 

is used in industry. However, its current application in 

industry does not utilise the information available in the data 

fully. This is due to the increased difficulty in correctly 

extracting and interpreting some of the more nuanced 

indicators of health. 

This paper aims to aid the decision-making process in 

interpreting the data for arriving to a diagnosis. The simple 

process of estimating distributions of performance measures 

were hampered by pervasive data quality issues, skewing the 

results. Where datasets are large, it is impractical to manually 

review each case, necessitating an automated method. 

However, even establishing a ruleset manually for filtering 

can be laborious and often complicated. This is especially so 

when the causes of the data quality issue are not fully 

understood. This paper utilises a machine-learning ensemble 

to automate the filtration through the data-driven generation 

of the ruleset. The next section will outline the prerequisite 

background knowledge required to appreciate the context of 

the case study. The details of the data used, and the results 

obtained are then explained. This automated filtering would 
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be the pre-cursor, and input, to an automated analysis, 

diagnostic, and prognostic system. 

2. BACKGROUND 

Illustrated in Figure 1 is an example trace of the current in a 

trip coil, captured during circuit-breaker trip test. The 

specifics differ depending on the circuit-breaker mechanism, 

but for this section, the commonly used spring-operated 

mechanism is considered. The principle is that the base 

waveform of the current would resemble a trapezoidal shape, 

similar to a classic high-inductance circuit due to the coil, and 

then the deviations from this shape are then interpreted as 

movement from the plunger resulting in an opposing current 

(Beattie, 1996). The deviations are thus a function of the 

velocity and acceleration of the plunger. Knowing the 

mechanism, it is therefore possible to attribute specific 

deviations to known events occurring within the circuit-

breaker. These knowledge-based features can then be 

interpreted for diagnostic purposes.  

 

 

Figure 1. Example of a trip coil analysis trace with the 

features extracted annotated. There are both voltage 

readings and current readings. The Main Contact reading is 

measured separately. 

 

Figure 1 highlights the features captured by the commonly 

used handheld device when recording the traces. Currently, 

the Main Contact Time (MCon) is the only feature with 

guidance values associated with it; the rest of the analysis is 

down to the discretion of the engineer conducting the trip coil 

test. This is primarily due to the MCon measurement being 

directly tied to regulations and thus being a key performance 

metric for manufacturers and operators alike. It is therefore 

the most established and standardised. If the circuit breaker 

fails to act within a predetermined time, backup protection 

systems within a substation are designed to trigger. 

However, as literature indicates, there is much value to be 

extracted from the other data to indicate the health of the 

device, which can be used to preventatively intervene with 

suitable maintenance prior to a substandard performance. 

This is substantiated in, for example, the IEEE Standard: 

C37.10.1-2000 (2006), or the IEEE Standard: 1375-1998 

(2003). In order to incorporate the features into the guidance 

notes, it is necessary to know the expected values for each. 

The challenges associated with obtaining these are the 

primary motivating factor for this paper. The expected values 

are not provided within standards nor are they readily 

available from manufacturers. Research such as those 

published by Dehghanian, Guan, & Kezunovic (2018) or 

Courtney, Livie, & Littler (2017) instead take the approach 

of tracking an individual circuit-breaker over its life. 

Referring to overall fleet performance of similar models as 

suggested in this paper can be considered an augmentation to 

provide contextual information for their approach as opposed 

to an alternative. This is because it can provide a basis for 

selecting a threshold to act. 

A historical dataset of tests of operational performance of the 

asset base was made available in order to establish the fleet’s 

expected performance, which can then be interpreted to 

provide guidance values, similar to the approach in (Strachan, 

McArthur, Stephen, McDonald, & Campbell, 2007). The 

decision-making process involved in using the results is 

further described in (Stephen, Strachan, McArthur, 

McDonald, & Hamilton, 2007) These distributions not only 

provide expected values but can also highlight potential 

failure modes in cases where the distributions are multi-

modal. However, it was discovered that the data quality 

varied significantly between samples, and it was required to 

remove erroneous results in order to provide a true 

distribution of performance. 

In the presence of excess noise, or faults causing unexpected 

deviations in current, the feature extraction capabilities of the 

trip coil current recording device can be compromised 

(Speed, 2000). Under such circumstances, the features 

provided were either rogue values that could be easily 

identified, or incorrect values that are difficult to 

programmatically identify. This is due to the difficulty in 

distinguishing a poorly performing circuit-breaker from a 

poorly captured feature. These incorrect values skew the 

distributions of performance and could adversely affect the 

validity of the guidance values chosen based using said 

distributions. This is of relevance in both establishing the 

distributions, and for assuring the validity of new data prior 

to comparing to said distributions. 

It is worth noting that in some cases, even an expert would 

struggle to identify the correct location for the feature, and 

that the traces vary significantly between manufacturers, 

making the task of automating the feature extraction very 
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challenging. Most implementations, such as (Kezunovic, 

Ren, Latisko, Sevcik, Lucey, Cook, & Koch, 2005), are based 

on experts adjusting parameters manually for each model, as 

noted within their conclusions of their work regarding its 

potential limitations. Based on this, and the fact that the 

overall performance of the feature extraction during usual 

cases is still very high, it was decided to filter out the cases 

of poor feature extraction instead of attempting to create a 

new feature extraction system with the intent of 

outperforming the original.  

3. METHODOLOGY 

A dataset of 250 historical, operational records were used to 

test the implementation, each from the same circuit-breaker 

model. The results are then shown both in traditional 

machine-learning contexts, as well as its effects on the 

distributions being used for establishing thresholds of 

acceptable performance. In practice, this methodology should 

be repeated for each model type of circuit-breaker. 

The full dataset was first manually labelled by a domain 

expert for validation purposes. In practice, only a subset 

would be manually labelled for training, and then the 

algorithm would be applied to the remaining unlabeled 

samples. To emulate this, a test set of 100 records are 

withheld from the training process entirely. The remaining 

150 records will be used for training using the well-

established k-fold cross-validation method, with k set to 5. 

The labelling consists of accepting or rejecting the features 

based on the raw traces. Further details regarding the data are 

tabulated in Table 1. 

 

3.1. Features 

Features represent the data being input into the machine-

learning algorithm to improve its performance. The primary 

features are simply the features that were extracted by the 

commonly-used handheld device shown in Figure 1 that are 

being validated. However, in addition to this, standard 

statistical metrics were included regarding the raw current 

data. These metrics are tabulated in Table 2. They were 

captured in various levels of granularity. The first is using the 

entire trace, the remainders segmented the trace and recorded 

the metrics from each segment separately. Three 

segmentation approaches were applied: 

1. Every trace is divided into windows of fixed length. The 

length was chosen by dividing the 98th percentile longest 

trace into a predetermined number of windows. 

2. Every trace is divided into a fixed number of windows. 

3. Every trace is divided using the Start, Latch, Buffer, 

Auxiliary Contact, and End Times. These are shown in 

Figure 1. Where the values for these features were 

missing, the mid-point from the next adjacent feature 

was used. For example, if Latch Time was missing, the 

mid-point between the Start Time and the Buffer Time 

was selected in its stead. 

It is known that noise or current-based faults can cause the 

feature extraction process of the handheld device to go awry 

(Speed, 2000). Segmenting the traces is motivated by 

attempts to localise the regions of instability, thus helping 

identify which features are most prone to miscapture. 

 

3.2. Machine Learning Methodology 

An ensemble approach, using various well-established 

machine learning algorithms and associated learning 

parameters was used. This was motivated by the difficulty in 

predicting the performance of a given machine learning 

algorithm prior to testing. This is especially the case in 

contexts such as the intended application of this paper, where 

multiple datasets are to be trained. This could mean the 

highest performing algorithm will vary depending on the 

dataset being analysed. Furthermore, it has been shown that 

an ensemble approach leveraging the differences in each 

Table 1. Table of the data used for training and testing. 

 

Feature Training Set Testing Set 

 Valid Invalid Valid Invalid 

Latch Time 103 43 69 31 

Buffer Time 108 42 74 26 

ACon Time 139 11 88 12 

End Time 146 4 98 2 

MCon Time 123 27 82 18 

Peak Current 123 27 84 16 

Plateau Current 143 7 94 6 

Initial Voltage 135 15 73 27 

Min. Voltage 148 2 100 0 

 

 

Table 2. Table of the statistical metrics used as features. 

 

Metrics 

Minimum 

0.05 Quantile 

0.50 Quantile 

0.95 Quantile 

Maximum 

Interquartile Range 

Mean (Arthimetic) 

Mode 

Standard Deviation 

Sum 

Length 

Max. / Mean 
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algorithm’s capabilities to arrive to a consensus can improve 

overall performance (Opitz, & Maclin, 1999). 

The ensemble’s methodology is illustrated in Figure 2. The 

training stage involves dynamic selection of candidate 

representatives for the final ensemble. The final ensemble is 

to consist of a candidate from each of the three classifier 

types. For each classifier type, three algorithm settings are 

explored. Each of the three settings are tested five times, and 

the one with the highest mean performance is selected. This 

stratified selection process ensures diversity in the chosen 

members of the ensemble by forcing a representative from 

each algorithm. The outputs from each representative was 

then input into a final classifier to interpret the results.  

The three classifier types were: decision trees, ensemble 

decision trees, and Support Vector Machines. The decision 

trees had the maximum number of splits varied as each 

algorithm setting. The ensembled decision trees varied their 

ensembling mechanism as the algorithm setting. Ada-

boosting, bagging, and RUS-Boosting were explored. 

Finally, the Support Vector Machines had their kernel 

functions varied. The three trialled were: linear, polynomial, 

and Gaussian. The final decision was taken by a Subspace 

Discrimant. 

The emphasis placed on robustness for reliability in 

performance motivated the extensive reliance on ensembles, 

and the insistence of high levels of representation in its 

members. The balance may be shifted to further emphasise 

peak performance if desired. 

 

Figure 2. Figure of the ensemble methodology. The training 

stage includes a process for selecting the representatives. 

4. RESULTS 

The results of the classification system are shown in Table 3 

using the F-Score, which is the harmonic mean of the 

precision and recall. Precision being the measure of true 

positives versus false positives, and recall being a measure of 

true positives versus false negatives. These classification 

results are most pertinent in the context of using the filter to 

validate new incoming features prior to benchmarking. A 

confusion matrix of a sample feature, Buffer Time, is shown 

in Table 4. For context, the results of the training showed that 

the highest performing representative inside the ensemble 

changed depending on the feature being filtered. Both the 

algorithm, and the hyperparameters varied; this somewhat 

validates the ensemble approach used to increase robustness 

in performance. It is worth noting that the features did not 

include information regarding the raw voltage traces, this is a 

likely factor in the reduced performance for the feature Initial 

Voltage. 

 

 

For the use-case of establishing the true distribution of 

performance, the filter’s impact is better appreciated by 

mapping it to the distributions directly. A kernel density 

estimate function was used to predict the distributions of the 

populations. From this, the traditionally-used 5th and 95th 

percentiles were obtained. A sample distribution set for the 

feature Buffer Time is shown in Figure 3. From the top, the 

figures show the distribution when data is unfiltered (3a), 

when filtered using the labels (3b), and when filtered when 

using the machine-learned filter (3c). The parameters used for 

the smoothing function will greatly impact the distributions.  

Table 3. Table of F-Scores for each feature being 

validated. 

 

Feature F-Score 

Latch Time 1.00 

Buffer Time 0.99 

ACon Time 0.99 

End Time 0.99 

MCon Time 0.98 

Peak Current 0.98 

Plateau Current 0.96 

Initial Voltage 0.84 

Min. Voltage 1.00 

 

 Table 4. Confusion matrix of the filtration of the Buffer 

Time feature. 

 

N = 100 Predicted 

Actual Invalid Valid 

Invalid 24 2 

Valid 0 74 
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Figure 3a) Plot of unfiltered buffer times. 

 

Figure 3b) Plot of filtered buffer times using labels. 

 

Figure 3c) Plot of filtered buffer times using algorithm. 

Figure 3. Plots of the Buffer Time for the cases: 

Unfiltered (a), filtered using labels (b), and filtered using 

algorithm (c). The bars are the relative frequencies of times 

(left axis). The thresholds are based on the cumulative 

frequency distributions (left axis) from probability density 

estimates (right axis). 

The parameters, and thresholds should be tuned by an 

engineer. They are included in this context solely for 

indicative purposes. Table 5 tabulates the deviations in the 

thresholds caused by using the automated process versus the 

unfiltered case. The bandwidth parameter for the kernel 

density estimate function was increased for the current and 

voltage features, compared to the time features. This is due to 

their spread being less, necessitating the greater sensitivity. 

5. DISCUSSION 

The impact of filtering on the thresholds based on the 5th and 

95th percentiles are shown to be significant. It is reiterated that 

these threshold values are arbitrary and are based on a kernel 

density smoothing function, which itself is subject to 

arbitrary parameters. However, for indicative purposes, they 

still clearly demonstrate the potential of this methodology. 

With the guidance of an engineer for tuning, post-filtering, 

the results can be a useful decision support tool for 

establishing expected performances of existing devices for 

diagnostic purposes. For example, results at the extremes 

would prompt further investigations. Likewise, multi-modal 

distributions would solicit an explanation; guiding the 

investigatory work to gain greater understanding of the fleet’s 

performance. It is worth noting that the values being filtered 

are not simply those at the tails of these distributions. There 

are cases where the values filtered, taken out of context, may 

seem entirely plausible and probable for a normally 

performing circuit-breaker. It is these values in particular, 

that may mislead an engineer, where this filtering becomes 

most impactful. 

Despite the strong performance of the approach, it is 

important to note the potential limitations and underlying 

assumptions present. The first issue is regarding the training 

of the ensemble, or any similar machine-learning algorithm. 

The traditional method of independent and identically 

distributed random sampling used to maintain classifier 

performance post-training may neglect the importance of 

maintaining representation of rarer events within the sampled 

set. In the context of condition-monitoring, data representing 

healthy samples can be expected to greatly outnumber 

unhealthy sample. As an example of poor representation, the 

test set for Minimum Voltage had no examples of poor 

features. This may lead to unhealthy samples being conflated 

with healthy samples of poor data quality. Ideally, the sample 

size should be increased, but this means increased time taken 

for manual labelling. Failing this, it is important to validate 

the overall procedure for a given dataset. As such, where the 

data shows particularly poor representation of certain classes, 

this method should not be used. 

Further work should include testing with data from different 

circuit-breaker models and incorporating features from the 

raw voltage trace for cross-validation purposes. An additional 

improvement may be to include the relative time taken to 

transition from one event to another. For example, the time 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

taken from Latch Time to Buffer Time, as opposed to having 

each referenced from Start Time. This would require a check 

to ensure the previous event time is valid but should isolate 

potential issues better. 

6. CONCLUSION 

Historical datasets can be used to establish expected 

performance measures. However, often there is the issue of 

data quality necessitating a filtering process. Manual filtering 

can be costly and time-consuming. However, through the use 

of machine-learning, it is possible to automate the generation 

of the filter. This required manually filtering only a sample of 

the dataset to provide labels for training the machine-learning 

algorithm. 

This paper used an ensemble of various well-established 

machine-learning algorithms consisting of decision trees and 

support vector machines of various hyperparameters in order 

to automatically filter an example dataset where the ground-

truth is known. Depending on the particular feature being 

filtered, the F-Score ranged between 0.84 and 1.00. This was 

then mapped to the distributions and subsequently to the 

thresholds representing boundaries of acceptable 

performance. In this example, the 5th and 95th percentiles 

were used; however, the thresholds should be subject to the 

engineer’s judgment as opposed to a generic, fixed threshold. 

It was shown that the deviation in accuracy caused by 

automating the process were minor. Though the results are 

promising, further work should include cross-validation 

through the inclusion of the raw data from the voltage trace, 

as well as further testing on different circuit-breaker models. 

Additionally, providing times relative to previous event may 

be more useful than times relative to the Start Time. 
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