
 1 

A Multi-task Deep Learning Model for Rolling-Element Bearing 
Diagnostics 

Ahmed Zakariae Hinchi1, Mohamed Tkiouat2 

1,2Laboratory for Applied Mathematics (LERMA), Mohammadia School of engineering, Mohammed V University, Rabat, 
Morocco 

ahm.zak.hin@gmail.com 
tkiouat@emi.ac.ma 

 
ABSTRACT 

The rolling element bearing is the predominant source of 
failures in rotating machinery. Therefore, detecting the 
corresponding faults, predicting their locations and 
measuring their severity is of immense importance. Classical 
intelligent diagnostics approaches rely on feature extraction 
methods followed by a classification model. Recently, deep 
learning models have improved the fault classification 
accuracy by learning a suitable representation directly from 
the raw sensor data. In this work, we present a novel multi-
task deep convolutional neural network trained end-to-end on 
raw vibration data to learn a shared representation for fault 
isolation and fault size evaluation. The proposed model 
architecture is constructed by stacking blocks of convolution 
layers, pooling layers, and batch normalization layers 
followed by a regression head and a classification head. 
Extensive experiments show that the proposed approach 
produces a superior performance to other existing methods 
and generalizes well to fault sizes not present in the training 
set.                                                                                                                                                                                                              

1. INTRODUCTION 

As the complexity of modern machines rises, the degradation 
of each component increasingly influences the failure 
probability of other interconnected parts. This fact, along 
with the growing challenges of cost and quality in the 
contemporary industry prompted the change in maintenance 
policies from corrective to condition-based strategies. 

Condition-based maintenance recommends maintenance 
tasks based on the real-time collected sensor data (Jardine et 
al., 2006). Moreover, this maintenance program allows faster 
operations through automated fault isolation and diagnostics, 
as well as the avoidance of unnecessary maintenance tasks 
and the anticipation of mandatory ones through prognostics. 

In rotating machinery, the rolling element bearing is the most 
vital element and accounts for the majority of failures (R.L. 
Winder and W.E. Littmann 1997). Moreover, various 
techniques are used for the monitoring of this component; 
from oil debris or motor current signature analysis to the 
examination of acoustic emissions or more frequently 
vibrations. Consequently, there are a plethora of studies 
concerning the intelligent diagnostics of rolling element 
earing using vibration data. 

Traditionally, data-based diagnostics of rolling element 
bearing is divided into two complementary steps:  mapping 
the high dimensional vibration data to the feature space by 
extracting, selecting, and combining various features; and 
classifying the chosen features to the right machine condition 
using pattern recognition techniques such as support vector 
machines, Bayes Classifier, k-nearest neighbor, Decision 
Trees, Random Forests, and neural networks. In this 
framework, the feature extraction step is the most important 
one and thus received a notable interest from the research 
community (Rai and Upadhyay, 2016); early works focused 
on extracting statistical parameters from the time domains 
such as kurtosis, root mean square value, or the crest factor 
(Samanta and Al-balushi, 2003). Other studies derived 
parameters from the frequency representation or the time-
frequency representation using techniques such as the Fast 
Fourier transform or the Short-time Fourier transform. 
Moreover, methods such as wavelet transform, empirical 
mode decomposition, chaos theory,  and spectral kurtosis are 
extensively studied and widely applied (Chen et al., 2016; Lei 
et al., 2013; Wang et al., 2016; Yan et al., 2014; Yang et al., 
2007).  

Since 2006, various deep learning models reached state of the 
art performance in different artificial intelligence 
applications (LeCun et al., 2015). This performance is 
attributed to their end-to-end approach and feature-learning 
paradigm. A deep learning model contains a hierarchy of 
stacked learning layers each depicting a representation level; 
i.e., the first layer represents the raw data, and the final layer 
describes the chosen output. Subsequently, different studies 
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using deep learning for bearing diagnostics have been 
proposed in recent years. The first works used stacked 
restricted Boltzmann machines to construct deep belief 
networks for the hierarchical representation ((Shao et al., 
2015), (Deng et al., 2016) and (Tao et al., 2016) (Gan et al., 
2016) (He et al., 2017)). Meanwhile, other studies used 
variant of autoencoders for the end-to-end diagnostics: (Jia et 
al., 2016) trained a deep neural network by stacking 
autoencoders on the frequency spectra. Following that, (Guo 
et al., 2017) proposed a stacked denoising autoencoder to 
generalize to noisy operating conditions. Moreover, (Shao et 
al., 2017) presented a deep autoencoder trained greedily on a 
maximum cross entropy loss function and optimized its 
architecture using the artificial fish swarm algorithm. Finally, 
(Jia et al., 2018) proposed a novel normalized sparse 
autoencoder. 

Motivated by the success of deep convolutional neural 
networks in image and speech recognition, few studies used 
these efficient architectures for bearing diagnostics; (Guo et 
al., 2016) proposed a hierarchical model where  first the fault 
is isolated, then the fault size is evaluated in the second step. 
The authors chose the leNET architecture (a standard 
architecture for image recognition) and transformed the one-
dimensional vibration signal accordingly into a two-
dimensional grid.   Moreover, (Shao et al., 2018a, 2018b) 
proposed a convolutional deep belief network where the 
vibration data is first compressed to increase efficiency. (Li 
et al., 2017) proposed an ensemble deep convolutional neural 
network where the decisions are taken by evidence fusion 
using an improved Dempster–Shafer theory.(Zhang et al., 
2017) proposed a deep convolutional network with large 
first-layer kernels and small kernels in the following layers. 
This model can achieve high accuracy in a noisy environment 
and can be adapted to different loading conditions by 
calculating their statistics. In (Zhang et al., 2018), the authors 
improved the model by adopting a new training methodology 
(small batch sizes and a varying dropout rate).The results 
showed that the new model generalizes well to noisy 
environments and different loading and operating conditions 
without knowing their statistics a priori. 

Nevertheless, there are apparent limitations with the 
aforementioned models. First, most of the reviewed 
approaches represent bearing diagnostics as a classification 
problem where each combination of fault type and fault size 
form a category. While this representation is validated to 
satisfying results in experimental data where fault sizes are 
seeded to discrete ones known a priori, it fails in practice as 
the fault size rises continuously with the degradation of the 
bearing. This fact violates the closed-world assumption and 
possibly confuses the separating hyperplanes. Second, while 
some studies adopt a hierarchical approach separating fault 
isolation and severity assessment, most treat the fault size 
assessment as a classification problem. Furthermore, the two-
step framework requires first training a model to detect and 
isolate the different faults, then train a model for each fault to 

assess its size. Thus, losing shared information about fault 
severity assessment. 

The contributions of the proposed approach are summarized 
as follows. Firstly, the proposed method can achieve perfect 
diagnostics performance without manual feature extraction. 
Secondly, the proposed model learn a shared representation 
for fault isolation and fault size evaluation and can generalize 
to fault sizes out of the training set.  

The remainder of this work is organized as follows. Section 
2 presents the model and its training framework. Section 3 
investigates the effectiveness of the proposed approach for 
rolling element bearing fault diagnostics. Finally, Section 4 
provides the conclusion.  

2. METHODOLOGY 

2.1. An introduction to convolutional neural networks 

Typically, a deep convolutional model uses a hierarchy of 
convolutional and pooling layer followed by a fully 
connected layer(s) to process the input data and estimate the 
output respectively. 
The convolutional layer extracts the feature map from the 
layer below using a series of trainable kernels called filters. 
Each filter convolves with its input then pass through an 
activation function. The convolutional layer determines the 
results of a convolution operation with input 𝑋𝑋, a bank of 
trainable kernels 𝐾𝐾 of length 𝑑𝑑𝑘𝑘, and a bias 𝑏𝑏 followed by a 
nonlinear activation function 𝜎𝜎:  
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(1) 

It is common to follow the  convolutional layer with a pooling 
layer. This layer is used to reduce the resolution of the feature 
map typically by employing a local maximum or average 
operation (max-pooling or average pooling). The pooling 
layer compresses the feature space, regularizes the deep 
neural network, and make the feature space more robust to 
shifts and distortions. 
On the other hand, the Batch Normalization (BN) proposed 
by (Ioffe and Szegedy, 2015) can lead to faster training times 
and improved regularization by controlling the input 
distribution across the layers. The first step is to normalize 
features on the batch axis using the mean and standard 
deviation of each activation of the mini-batch. 
Finally, the output of the last convolutional layer is flattened 
and connected to a dense layer.  A fully connected or a dense 
layer is a layer where each neuron is connected to each 
neuron in the next layer through a weight matrix  𝑊𝑊𝑓𝑓 , a 
bias 𝑏𝑏𝑓𝑓, and an activation function 𝜎𝜎:  

 [ ]( )t f t 1 t ff σ W h , x  b−= +  (2) 
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The model parameters are usually defined using a gradient 
descent based minimization of the chosen loss function using 
the backpropagation algorithm. 

2.2. The multi-task training approach 

In multi-task learning, the model is trained using multiple 
loss functions each corresponding to a task. By employing a 
shared representation, the model can exploit the synergy 
between tasks and boost the performance of each one (Ando 
and Zhang, 2005). Prior works suggest that multi-task 
training allows the learning of a more generalizable 
embedding. For instance, (Gebru et al., 2017) found that 
multi-task training improved the domain adaptation in a fine-
grained classification framework. Similarly, (Ranjan et al., 
2017) presented hyper-face: a model for simultaneous face 
detection, landmarks localization, pose estimation and gender 
recognition in which the fused representation allows better 
generalization for each of the tasks mentioned above. In 
(Hinchi and Tkiouat, 2018), we used an auxiliary loss to 
improve the estimation of the remaining useful life of a 
rolling element bearing.  

We propose a multi-task training framework for the join fault 
isolation and severity assessment (figure 1). Subsequently, 
we train our model with two loss functions: The classification 
head is trained with a categorical cross entropy loss 
measuring the difference between the right distribution 𝑝𝑝 and 
estimated fault diagnostics distribution 𝑞𝑞:  

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � � −y𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(y𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐
^

)
𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑥𝑥

 (3) 

 

On the other hand, the regression head is trained using the 
mean absolute error loss function: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡_𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 =  
∑|𝑦𝑦𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑦𝑦𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�|

𝑁𝑁
 (4) 

 

The model is trained end-to-end using the aforementioned 
loss functions. Specifically, the backpropagation algorithm is 
used to compute the gradients. The overall gradient is 
composed of the gradient from the classification loss function 
plus the one from the regression one multiplied by a discount 
weight γ=0.25. The optimization is conducted with stochastic 
gradient descent. 

 
Figure 1. The different frameworks used for fault diagnostics.     
1.a: The classification framework. 1.b: The hierarchical 
framework. 1.c: The  proposed joint multi-task framework. 

2.3. The model architecture 

We propose a convolutional neural network architecture 
composed of stacked convolutional, batch normalization and 
pooling layers respectively. Since the fault size in the healthy 
condition is equal to zero, we multiply the fault size neuron 
value by one minus the probability of the normal health 
condition. This simple restriction is visualized in Figure 2. 
Furthermore, the selection of the hyper-parameters of deep 
neural networks is an open problem. Various recent works 
tackled this issue with evolutionary strategies (Young et al., 
2015), reinforcement learning (Zoph and Le, 2016), or 
Bayesian optimization. Although these methods 
demonstrated good performances, they require a significant 
computational burden. In this work, we used a simple random 
search over the space of hyper-parameters (the number of 
filters and their length and stride, the number of layers…). 
The stride of the first layer is fixed by limiting the receptive 
field of each neuron in the dense layer to one period of the 
input signal. As (Cohen and Shashua, 2016) showed that deep 
Convolutional rectifier networks are universal with max 
pooling, we use the rectifier activation 𝜎𝜎 = max (0, 𝑥𝑥) after 
every convolutional layer and the fault size neuron. For the 
fault detection and isolation layer, we use the softmax loss 

function. 𝜎𝜎(𝑧𝑧)𝑗𝑗 = 𝑠𝑠𝑧𝑧𝑗𝑗

∑ 𝑠𝑠𝑧𝑧𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

  for j=1,…4 
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Figure 2. The simplified architecture of the proposed model. 
 

3. VALIDATION OF  THE PROPOSED MODEL 

In real-world applications, the fault size varies continuously 
due to the bearing degradation. Thus, it is unrealistic to have 
every possible fault size present in the experimental set. In 
the remainder of this section, we will investigate the 
performance of the three different frameworks from figure 1, 
and their ability to generalize to new fault sizes. 

3.1. Data description 

The experiments data are acquired from the Case Western 
Reserve University (CWRU) Bearing Data center (Loparo, 
2005). This dataset contains vibration data sampled at a 
frequency of 12 kHz under four different operating 
conditions (0, 1, 2, and 3 horsepower). Along with the normal 
vibration data, seeded faults are situated in the three different 
component of the rolling element bearing (ball, inner-race, 
and outer-race). The seeded faults can have a diameter of 
0.007 in., 0.014 in., or 0.021 in.  

From every operating condition, we use 7.5 seconds of 
normal vibration, and 2.5 seconds of the three fault types and 
the three-fault size respectively with the exception of the 
0.014-inch ball fault for the training and validations sets. In 
addition, the vibration data is divided into samples of 1024 
point where the training samples are overlapped with an 
overlap of 64 for data augmentation. Table 1 describes the 
detailed dataset for each operating condition.  

3.2. Experimental setup 

This section investigates the performance of the proposed 
neural network in the three diagnostics framework explored 
in figure 1. To limit the effect of the hyper-parameter 
selection step we use the same architecture for the three 
model up until the last layer. This architecture is composed 
of six stacked convolutional layers each followed with a 

rectifier activation, a batch normalization layer and a pooling 
layer. The first layer is composed of 24 wide filters of 128.  
The following convolutional layers contain each 48 filter of 
length seven. Pooling layers are of length three and stride 
three. The length of the fully connected layer is 80.Moreover, 
the learning rate is 1e-5, the chosen batch size is 50, and the 
number of epochs is 250. 

This architecture is trained using three different methods. 
First,   in the classification framework, the data are assigned 
to nine different classes each depicting the combined fault 
type and location. Second, the architecture is trained in a 
hierarchical way by training a model for fault isolation then 
training three different models each specialized in estimating 
the fault size for a given fault location. Finally, we train the 
model in a joint way as described in section 2. 

The experiments were implemented using the Tensorflow 
deep learning framework. Furthermore, training and 
inference tasks are run on an Ubuntu Linux machine with a 
Nvidia GTX 1070 GPU. 

3.3. The results  

Table 2 and 3 shows the accuracy of the fault isolation and 
the mean absolute error of the fault size estimation on the   

Table 1. The experimental dataset. 
 

Condition Training 
set 

Validation 
set Test set 

Normal 
7.5 s /  
1359 
sample 

7.5 s / 87 
sample 

7.5 s / 87 
sample 

Inner-race 
0.007 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Inner-race 
0.014 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Inner-race 
0.021 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Outer-race 
0.007 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Outer-race 
0.014 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Outer-race 
0.021 in 

2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Ball 0.007 in 
2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 

Ball 0.014 in - - 2.5 s /29 
sample 

Ball 0.021 in 
2.5 s  / 
453 
sample 

2.5 s /29 
sample 

2.5 s /29 
sample 
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Figure 3. The Tsne representation of the classification 
model. 

test-set respectively. Moreover, (figure 3, 4, and 5) illustrates 
the Tsne representation from the last fully connected layer of 
the classification model, the hierarchical model and the multi-
task model respectively. 

Table 2. The accuracy of the fault detection and isolation 
task. 

 

Condition  
Classifi
cation 
Model 

Hierarchic
al Model 

Multi-
task 
Model 

Normal 100 % 100 % 100 % 
Inner-race 
0.007 in 

100 % 100 % 100 % 

Inner-race 
0.014 in 

100 % 100 % 100 % 

Inner-race 
0.021 in 

100 % 100 % 100 % 

Outer-race 
0.007 in 

100 % 100 % 100 % 

Outer-race 
0.014 in 

100 % 100 % 100 % 

Outer-race 
0.021 in 

100 % 100 % 100 % 

Ball 0.007 in 100 % 100 % 100 % 

Ball 0.014 in 98.27 % 100 % 100 % 
Ball 0.021 in 100 % 100 % 100 % 

 
To obtain the fault size from the classification model, we 
select the class with the highest estimated probability. Then, 
we normalize the values from the selected fault type and 
multiply them with their nominal class. I.e. if the estimated 
probabilities are (0,0.1,0.9,0.05,0,0,0,0,0.05), the estimated 
fault location is the inner-race and the estimated size is 

0.1
0.1+0.9+0.05

∗ 0.007 + 0.9
0.1+0.9+0.05

∗ 0.014 + 0.05
0.1+0.9+0.05

∗
0.021 =  0.01367.  

The selected neural network architecture obtains perfect in-
distribution accuracy in the three different frameworks. The  

Figure 4. The Tsne representation of the hierarchical model. 
 

accuracy here refers to the prediction of the right fault type. 
In the out-of-training-distribution case, the classification 
model performance deteriorated due to the coupling of fault 
size and fault type. Indeed, (figure 3) shows that the 
representation of each in-distribution fault-type and fault size 
couple are linearly separable and that the representation of 
the out-of-distribution fault-size is dispersed between the 
different clusters. This confirms the suspicion that the learned 
representation for the fault isolation task here is susceptible 
to perturbations from the fault size. 

Table 3 shows the performance of the three frameworks in 
fault size assessment. All three approaches obtained 
negligible errors in the in-training-distribution cases. In 
contrast, large errors are observed in the case of the out-of-
distribution fault size. Moreover, the multi-task approach 
outperforms the other frameworks significantly, as it uses 
information acquired from different fault types to assess the 
size of the unknown fault size. (Figure 5). On the other hand, 
the hierarchical approach model tries to extrapolate the fault 
size from the observed ones (figure 4) while the classification 
approach fails miserably. 

Figure 5. The Tsne representation of the multi-task model. 
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Table 3. The mean absolute error of fault size estimation 
measured in 1e-3 inch  

 

Condition  
Classifi
cation 
Model  

Hierarchic
al Model 

Multi-
task 
Model 

Normal 1.57e-2 2e-2 1.25e-2 
Inner-race 
0.007 in 

1.29e-2 9e-2 0.05 

Inner-race 
0.014 in 

3.47e-3 0.107 0.17 

Inner-race 
0.021 in 

1.10e-2 0.113 8.5e-2 

Outer-race 
0.007 in 

1.80e-2 0.05 0.06 

Outer-race 
0.014 in 

8.96e-3 0.22 0.08 

Outer-race 
0.021 in 

8.47e-2 0.12 0.25 

Ball 0.007 in 2.81e-2 0.18 0.08 

Ball 0.014 in 5.17 4.58 2.31 
Ball 0.021 in 7.69e-2 0.55 0.17 

 

4. CONCLUSION 

In this paper, we proposed a framework for joint fault 
isolation and severity estimation. The presented model is 
based on a deep convolutional neural network and showed 
superior performance for out-of-distribution fault size 
estimation. 

 As the complexity of monitored assets rises, the risk of 
failure modes not being considered in the experimental phase 
increases. Therefore, the problem of open-diagnostics in its 
general form needs more interest from the scientific 
communities. Moreover, most studies do not use the data 
acquired during deployment to improve the performance of 
the intelligent diagnostics system. Our future work will focus 
on a lifelong learning approach for diagnostics. 

REFERENCES 

Ando, R.K., Zhang, T., 2005. A Framework for Learning 
Predictive Structures from Multiple Tasks and 
Unlabeled Data. Journal of Machine Learning 
Research 6, 1817–1853. 

Chen, J., Li, Z., Pan, J., Chen, G., Zi, Y., Yuan, J., Chen, B., 
He, Z., 2016. Wavelet transform based on inner 
product in fault diagnostics of rotating machinery: 
A review. Mechanical Systems and Signal 
Processing 70–71, 1–35. 
https://doi.org/10.1016/j.ymssp.2015.08.023 

Cohen, N., Shashua, A., 2016. Inductive Bias of Deep 
Convolutional Networks through Pooling 
Geometry. arXiv:1605.06743 [cs]. 

Deng, S., Cheng, Z., Li, C., Yao, X., Chen, Z., Sanchez, R.-
V., 2016. Rolling bearing fault diagnostics based on 
Deep Boltzmann machines, in: Prognostics and 
System Health Management Conference (PHM-
Chengdu), 2016. IEEE, pp. 1–6. 

Gan, M., Wang, C., Zhu, C., 2016. Construction of 
hierarchical diagnostics network based on deep 
learning and its application in the fault pattern 
recognition of rolling element bearings. Mechanical 
Systems and Signal Processing 72–73, 92–104. 
https://doi.org/10.1016/j.ymssp.2015.11.014 

Gebru, T., Hoffman, J., Fei-Fei, L., 2017. Fine-Grained 
Recognition in the Wild: A Multi-task Domain 
Adaptation Approach. IEEE, pp. 1358–1367. 
https://doi.org/10.1109/ICCV.2017.151 

Guo, X., Chen, L., Shen, C., 2016. Hierarchical adaptive deep 
convolution neural network and its application to 
bearing fault diagnostics. Measurement 93, 490–
502. 
https://doi.org/10.1016/j.measurement.2016.07.054 

Guo, X., Shen, C., Chen, L., 2017. Deep Fault Recognizer: 
An Integrated Model to Denoise and Extract 
Features for Fault Diagnostics in Rotating 
Machinery 17. 

He, J., Yang, S., Gan, C., 2017. Unsupervised Fault 
Diagnostics of a Gear Transmission Chain Using a 
Deep Belief Network 21. 

Hinchi, A.Z., Tkiouat, M., 2018. Rolling element bearing 
remaining useful life estimation based on a 
convolutional long-short-term memory network. 
Procedia Computer Science, proceedings of the first 
international conference on intelligent computing in 
data sciences, icds2017 127, 123–132. 
https://doi.org/10.1016/j.procs.2018.01.106 

Hochreiter, S., Schmidhuber, J., 1997. LSTM can solve hard 
long time lag problems, in: Advances in Neural 
Information Processing Systems. pp. 473–479. 

Ioffe, S., Szegedy, C., 2015. Batch Normalization: 
Accelerating Deep Network Training by Reducing 
Internal Covariate Shift, in: PMLR. Presented at the 
International Conference on Machine Learning, pp. 
448–456. 

Jardine, A.K.S., Lin, D., Banjevic, D., 2006. A review on 
machinery diagnostics and prognostics 
implementing condition-based maintenance. 
Mechanical Systems and Signal Processing 20, 
1483–1510. 
https://doi.org/10.1016/j.ymssp.2005.09.012 

Jia, F., Lei, Y., Guo, L., Lin, J., Xing, S., 2018. A neural 
network constructed by deep learning technique and 
its application to intelligent fault diagnostics of 
machines. Neurocomputing 272, 619–628. 
https://doi.org/10.1016/j.neucom.2017.07.032 

Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., 2016. Deep neural 
networks: A promising tool for fault characteristic 
mining and intelligent diagnostics of rotating 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

7 

machinery with massive data. Mechanical Systems 
and Signal Processing 72–73, 303–315. 
https://doi.org/10.1016/j.ymssp.2015.10.025 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. 
Nature 521, 436–444. 
https://doi.org/10.1038/nature14539 

Lei, Y., Lin, J., He, Z., Zuo, M.J., 2013. A review on 
empirical mode decomposition in fault diagnostics 
of rotating machinery. Mechanical Systems and 
Signal Processing 35, 108–126. 
https://doi.org/10.1016/j.ymssp.2012.09.015 

Li, S., Liu, G., Tang, X., Lu, J., Hu, J., 2017. An Ensemble 
Deep Convolutional Neural Network Model with 
Improved D-S Evidence Fusion for Bearing Fault 
Diagnostics. Sensors 17, 1729. 
https://doi.org/10.3390/s17081729 

Loparo, K.A., 2005. Bearing Data Center. Case Western 
Reserve University. 

Rai, A., Upadhyay, S.H., 2016. A review on signal processing 
techniques utilized in the fault diagnostics of rolling 
element bearings. Tribology International 96, 289–
306. https://doi.org/10.1016/j.triboint.2015.12.037 

Ranjan, R., Patel, V.M., Chellappa, R., 2017. HyperFace: A 
Deep Multi-task Learning Framework for Face 
Detection, Landmark Localization, Pose 
Estimation, and Gender Recognition. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence 1–1. 
https://doi.org/10.1109/TPAMI.2017.2781233 

Samanta, B., Al-balushi, K.R., 2003. Artificial neural 
network based fault diagnostics of rolling element 
bearings using time-domain features. Mechanical 
Systems and Signal Processing 17, 317–328. 
https://doi.org/10.1006/mssp.2001.1462 

Shao, H., Jiang, H., Zhang, H., Duan, W., Liang, T., Wu, S., 
2018a. Rolling bearing fault feature learning using 
improved convolutional deep belief network with 
compressed sensing. Mechanical Systems and 
Signal Processing 100, 743–765. 
https://doi.org/10.1016/j.ymssp.2017.08.002 

Shao, H., Jiang, H., Zhang, H., Liang, T., 2018b. Electric 
Locomotive Bearing Fault Diagnostics Using a 
Novel Convolutional Deep Belief Network. IEEE 
Transactions on Industrial Electronics 65, 2727–
2736. https://doi.org/10.1109/TIE.2017.2745473 

Shao, H., Jiang, H., Zhang, X., Niu, M., 2015. Rolling 
bearing fault diagnostics using an optimization deep 
belief network. Meas. Sci. Technol. 18. 

Shao, H., Jiang, H., Zhao, H., Wang, F., 2017. A novel deep 
autoencoder feature learning method for rotating 
machinery fault diagnostics. Mechanical Systems 
and Signal Processing 95, 187–204. 
https://doi.org/10.1016/j.ymssp.2017.03.034 

Tao, J., Liu, Y., Yang, D., 2016. Bearing Fault Diagnostics 
Based on Deep Belief Network and Multisensor 

Information Fusion. Shock and Vibration 2016, 1–
9. https://doi.org/10.1155/2016/9306205 

Wang, Y., Xiang, J., Markert, R., Liang, M., 2016. Spectral 
kurtosis for fault detection, diagnostics and 
prognostics of rotating machines: A review with 
applications. Mechanical Systems and Signal 
Processing 66–67, 679–698. 
https://doi.org/10.1016/j.ymssp.2015.04.039 

Yan, R., Gao, R.X., Chen, X., 2014. Wavelets for fault 
diagnostics of rotary machines: A review with 
applications. Signal Processing, Time-frequency 
methods for condition based maintenance and 
modal analysis 96, 1–15. 
https://doi.org/10.1016/j.sigpro.2013.04.015 

Yang, J., Zhang, Y., Zhu, Y., 2007. Intelligent fault 
diagnostics of rolling element bearing based on 
SVMs and fractal dimension. Mechanical Systems 
and Signal Processing 21, 2012–2024. 
https://doi.org/10.1016/j.ymssp.2006.10.005 

Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., 
Patton, R.M., 2015. Optimizing Deep Learning 
Hyper-parameters Through an Evolutionary 
Algorithm, in: Proceedings of the Workshop on 
Machine Learning in High-Performance Computing 
Environments, MLHPC ’15. ACM, New York, NY, 
USA, pp. 4:1–4:5. 
https://doi.org/10.1145/2834892.2834896 

Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z., 2018. A 
deep convolutional neural network with new 
training methods for bearing fault diagnostics under 
noisy environment and different working load. 
Mechanical Systems and Signal Processing 100, 
439–453. 
https://doi.org/10.1016/j.ymssp.2017.06.022 

Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z., 2017. A 
New Deep Learning Model for Fault Diagnostics 
with Good Anti-Noise and Domain Adaptation 
Ability on Raw Vibration Signals. Sensors 17, 425. 
https://doi.org/10.3390/s17020425 

Zoph, B., Le, Q.V., 2016. Neural Architecture Search with 
Reinforcement Learning. arXiv:1611.01578 [cs]. 

BIOGRAPHIES  

Ahmed Zakariae Hinchi is currently a Ph.D. student in the 
laboratory of applied mathematics (LERMA) in the 
Mohammadia School of engineering. He holds an 
engineering degree in Industrial engineering and integrated 
manufacturing from the ENSAM School of engineering. His 
research interests include prognostics and health 
management, reliability, machine learning, and deep 
learning. 
Mohamed Tkiouat is a Professor at the Mohammadia 
School of Engineering, Mohamad V University of Rabat, 
Morocco. His primary areas of research include Markovian 
and multi-agent models, reliability and risk management.



 8 

 


	1. Introduction
	2. Methodology
	2.1. An introduction to convolutional neural networks
	2.2. The multi-task training approach
	2.3. The model architecture

	3. Validation of  the proposed model
	3.1. Data description
	3.2. Experimental setup
	3.3. The results

	4. Conclusion

