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ABSTRACT

This study investigates the development of a new inter-
engine variation analysis method for the purpose of
equipment health monitoring, in which the similarity - in
both system behaviour and external disturbances - across
multiple (sister) engines is leveraged. The sister engine pro-
vides a baseline description of the engine under observation,
such that the challenge becomes the differentiation between
normal inter-engine variation and the anomalous behaviour,
bypassing the need to describe highly complex engine
dynamics. The inter-engine residuals are modelled directly
with input data from both engines, using previous healthy
data for training. The trained model is used to compensate
known differences between real engines. Anomalous data
is detected by comparison of the simulated output with the
true residuals. The method is demonstrated on a real data
set containing both nominal, healthy engine data, and engine
data containing anomalies.

1. INTRODUCTION

Modern engineering systems are growing increasingly
complex in order to achieve higher levels of performance. In
response, equipment health monitoring (EHM) procedures
must become more sophisticated to ensure reliable operation
of the asset. EHM includes a variety of tasks, such as fault
detection and isolation/localisation, monitoring of compo-
nent degradation, and prediction of impending failures. EHM
is key in assessing the health of systems/components of
aero gas turbine engines (GTEs) in order to provide an early
warning of impending failures.

Currently, EHM algorithms, operating both on-board and
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off-board, monitor engine data in order to detect both fault
signatures and anomalous behaviour. The result of the EHM
informs human operators of which parameters are of interest
such that a decision/diagnosis can be made based on both
engineering knowledge and the result of automatic EHM.
The recent availability of high frequency time series data,
collected throughout the flight, provides an opportunity
to increase EHM coverage. However, it also dramatically
increases the size of the data collected. Diagnosis of faults
requires both detection and localisation of fault signifiers
in the data, such that automatic algorithms as well as
engineering judgement can be employed.

A standard approach to detecting known fault modes, i.e.
those that have been previously observed, is to identify a
fault signature in time series data and employ algorithms that
can detect similar instances of the signature in future data.
Algorithmic techniques may range from simple thresholding
of parameters, to sophisticated machine learning techniques
(Isermann, 2006; Yan & Yu, 2015). This approach has been
shown to be affective across many applications (Miljković,
2011). Modern aero GTEs have a host of sensors collect-
ing operational data for the purposes of EHM, however,
examples of fault/impending fault symptoms are rarely
observed because GTE components are not run to failure.
The detection of fault symptoms therefore, often becomes
the detection of novel behaviour in the data record. To
detect novel data instances a good description of the nominal
system behaviour must be achieved, however, the behaviour
of a GTE is highly complex and subject to many unmeasured
disturbances, the description of which offers a significant,
possibly infeasible challenge. As such, standard approaches
are not appropriate in this context, motivating the method
developed in this work.

Aerospace GTEs are commonly used in pairs, named sister
engines. Sister engines share the same hardware and control

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

architecture, as well as sharing many external disturbances
when in operation (such as changes in ambient temperatures
and pressures). They therefore act as a physical models of
their counterpart, potentially replacing the need for a math-
ematical model and producing an inter-engine residual as a
base for analysis and fault detection. However, they also dis-
play heterogeneous behaviour in normal operation, this can
be due to a difference in engine component age, heteroge-
neous external disturbances and behaviour due to faults that
is to be detected. In order for analysis of the inter-engine
residual to be successful, variations due to normal, explain-
able differences in engine behaviour must be eliminated in
order that anomalous behaviour can be easily detected. This
is the problem that is addressed in this work.

A method for inter-engine variation analysis is presented,
based on the description of nominal inter-engine variations
with a data driven model, the mixture of experts (MoE)
model. The MoE model is able to automatically switch
between different regression experts based on the distribution
of the current input data sample, (Jacobs & Hinton, 1991). It
can well describe complex systems that operate over multiple
different operating conditions, and is hence well-suited to
modelling the behaviour of GTEs.

The MoE model is used to perform a mapping between
inter-engine residuals considered as system inputs and
outputs. The difference between measured and predicted
output inter-engine residuals is demonstrated to be a good
target for anomaly detection. The new analysis method is
demonstrated on a real data case study and is shown to be
successful in producing a variable with reduced influence
from explainable behaviour as well as increased sensitivity
to anomalous behaviour.

The paper proceeds as follows. In Section 2 the concept of
inter-engine variation analysis is introduced. The MoE mdoel
is then introduced in Section 3. A real world case study is in-
troduced in Section 4 and the results are presented in Section
4.3. Finally, concluding remarks are given in Section 5.

2. INTER-ENGINE VARIATION ANALYSIS

Sister engines, numbering 2 or greater, on a single aircraft are
generally controlled to the same control reference, and are
therefore attempting to produce the same amount of thrust.
Inter-engine variation is defined as the difference in behaviour
between the two engines. The variation can be quantified by
computing the residuals between engine parameters recorded
from various on-board sensors. Sources of this variation are
attributed to the following;

1. Heterogeneous (expected) degradation in the health of
engine components (e.g. loss of efficiency due to com-
ponent age)

2. Heterogeneous measured external disturbances (e.g.

temperatures at engine inlet)

3. Heterogeneous unmeasured external disturbances (e.g.
airflow at engine inlet)

4. Abnormal behaviour (to be detected)

Degradation in the health of engine components is expected
to occur slowly, over a long time scale, and is approximately
invariant between consecutive flights. It is therefore assumed
that the difference in degradation can be captured by some
mapping from the parameters of sister engines to the inter-
engine residuals. Similarly, the effects of differing measured
inlet conditions can be mapped to the inter-engine residuals.
The mapping may be non-linear and dynamic, such that it is
dependent on the current operating condition of each engine.
Given a sufficiently flexible model structure, and represen-
tative training data, variations due to these causes are hence
describable.

To achieve such a mapping a statistical model can be identi-
fied such that

yrn = f(xr
n) + rA,B

n + en (1)

where yrn = yAn − yBn , xr
n = xA

n −xB
n are residuals of an en-

gine parameter of interest and the measured inlet conditions
respectively, rA,B

n is process noise that contains unmeasured
disturbances and abnormal behaviour, and en is i.i.d. Gaus-
sian white noise. A and B indicate data originating from en-
gine A and B respectively. n is the current time step where
n = 1, 2, . . . , N

The quantityR = [rA,B
1 , rA,B

2 , . . . , rA,B
N ]+e is defined as the

normalised inter-engine residual for the current flight under
investigation, where

rA,B
n + en = yrn − f(xr

n). (2)

Under the nominal case, with no different unmeasured dis-
turbances acting on the sister engines such that rA,B

n = 0,
R = e is zero mean i.i.d. Gaussian white noise. Any data
that is distinguishable from Gaussian white noise is therefore
resultant from either an unmeasured disturbances or abnor-
mal behaviour and can be detected.

The normalised inter-engine residual, rA,B , is therefore more
amenable to anomaly detection than either the raw data or the
inter-engine residual, yr. Multiple methods are available to
perform anomaly detection on rA,B . The simplest approach
is to threshold the absolute value, |rA,B |, any value that is
observed above the threshold is a potential fault. A further
method is to apply a sliding window across rA,B and yr and
compare the variance of the windowed data, resulting in an
anomaly score. Many more advanced methods are available
(Chandola, Banerjee, & Kumar, 2009). This work is intended
to highlight the concept of inter-engine variation analysis and
as such the anomaly detection step is considered beyond the
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scope of this paper.

3. BAYESIAN MIXTURE OF EXPERTS

The MoE model is capable of describing complex dynamic
systems that operate over multiple states. The model proba-
bilistically divides up the input space using a gating network,
a regression expert operates over each of regions selected
by the gating network. The parameters of MoE model are
estimated within an elegant Bayesian inference framework,
named variational Bayesian inference, by iterating through
closed form update equations, (Ueda & Ghahramani, 2002;
Baldacchino & Rowson, 2016).

3.1. The Mixture of Experts Model

A multi-input single-output system at time instant n can be
described by a MoE model, formed by the sum of the product
of the k’th gating network gk(·) and the k’th expert function
fk(·), such that

yn =

K∑
k=1

gk(xn, πk, θ
g
k)fk(xn,wk) , (3)

where xn = [x1n, . . . , x
dx

n ] is the dx dimensional system in-
put, and yn is the system output. The k’th expert function,
fk(·) is restricted to to be linear-in-the-parameters, such that
it can be decomposed into the sum ofM weighted basis func-
tions,

fk(xn,wk) =

M∑
m=1

wk,mφn(xn) (4)

= Φnwk (5)

where

Φn = [φ1(xn), φ2(xn), . . . , φM (xn)], Φn ∈ R1×M

wk = [wk,1, wk,2, . . . , wk,M ]T , wk ∈ RM×1

and Φn is the n’th row of the matrix Φ,

Φ = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
M ]T , Φ ∈ RN×M .

where N is the total number of data points.

The k’th gating network gk(·) takes the form of a normalised
Gaussian function,

gk(xn, θ
g
k) =

πkN (xn|µk,Λ
−1
k )∑K

i πiN (xi|µi,Λ
−1
i )

(6)

where θgk = [µk,Λk], and µk and Λk are the mean and co-
variance matrix of the k’th gating network respectively. πk is
the k’th mixing coefficient, satisfying the conditions πk ≥ 0
and

∑K
k=1 πk = 1. The gating network gives the probability

that the output is described by the k’th expert function.

Figure 1. Schematic of the Mixture of Experts model.

3.2. Variational Bayesian Inference

Variational Bayesian inference is used to estimate the param-
eters of the MoE model. The likelihood function for Equation
(3) is given by

p(yn|xn,π, θ
g
k, θ

e
k) =

K∑
k=1

p(k|xn, πk, θ
g
k)p(yn|xn, θ

e
k).

(7)
where p(k|xn, πk, θ

g
k) = gk(xn, θ

g
k) is the posterior con-

ditional probability that xn is assigned to the k’th expert,
and p(yn|xn, θ

e
k) is the probability distribution describing the

k’th expert, parametrised by θek where wk ∈ θek. Given N
training data points, the joint likelihood is given by

P (Y,Φ|π,θg,θe) =

N∏
n=1

K∑
k=1

p(k|xn, πk, θ
g
k)p(yn|xn, θ

e
k)

(8)
where Y = [y1, . . . , yN ]T . The joint likelihood given by
Equation (8) implies a soft switching between experts such
that the gating network determines the contribution of each
expert to the output. In order to enforce hard switching, such
that one expert is dominant at each sample time, the latent
variable Z ∈ RN×M is introduced. The elements zn,k of Z
are chosen as zn,k = 1 if the k’th expert is dominant at sam-
ple time n, and 0 otherwise. The incorporation of the latent
variable Z simplifies Equation (8) by allowing the sum to be
replaced by a product, such that (8) can be re-written

P (Y,Φ, Z|π,θg,θe) =

N∏
n=1

K∏
k=1

(
p(k|xn, πk, θ

g
k)

× p(yn|xn, θ
e
k)
)zn,k

. (9)

Conjugate exponential distributions are assigned to the
probability distributions in Equation (9), with appropriate
prior distributions. The choice of distributions and priors are
based on those chosen in (Baldacchino & Rowson, 2016) and
(Baldacchino, 2018), interested readers are referred to the
former for a complete mathematical description. Of interest
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here is the choice of a Gaussian mixture model (GMM)
for p(k|xn, πk, θ

g
k), such that the gating network is able to

probabilistically partition the potentially high dimensional
input space.

The joint distribution of all the random variables in the model
is given by

p(Y,Φ, Z,θg,θe,a|π) (10)

where a is a hyper-parameter introduced by the choice of
prior distribution.

In order to infer the posterior distribution of the model param-
eters p(θg,θe,a|Y ), an approximate Bayesian framework
must be leveraged, because the marginal likelihood P (Y ) is
intractable. The choice of the latent variables and conjugate
distributions in Equation (9) allows for the inference to be
performed via variational Bayesian expectation maximisation
(VBEM). Variational inference places the assumption that
the posterior distribution over the latent variables and param-
eters can be approximated by factorised distributions. The
Kullback-Leibler (KL) divergence between the variational
posterior distribution and the true posterior is used to define
a lower-bound on the marginal likelihood and Closed form
update equations can be derived by performing a functional
differentiation on the lower-bound. The update equations
are a Bayesian equivalent to the well known expectation
maximisation (EM) algorithm,

VBE-step: The latent variables z are updated by evaluating
the distributions over the random variables

VBM-step: The distributions over the random variables us-
ing the values of the latent variables, z.

Iterating between the E and M steps is guaranteed to increase
the variational lower bound and hence the algorithm is guar-
anteed to converge to a local maxima.

4. CASE STUDY: ANOMALY DETECTION IN MEASURED
ENGINE SIGNALS

In this section, the inter-engine variation analysis framework
developed above is applied to a real world data set. The case
study demonstrates how the method can reduce the bias in
the residuals as well as increase the sensitivity to anomalous
engine behaviour.

4.1. Example anomaly

An example of an anomaly that has been observed in real
engine data is shown in Figure 2. The signature of this
anomaly is characterised by a sharp drop in measured pres-
sure in engine A (orange line, Panel E) followed by a short
time-scale increase in high power shaft speed (N2) (orange
line, panel B). Following this, multiple engine parameters
then operate around a changed set point, here shown for N2
and P30 (Top and Middle panels respectively). This anomaly

was successfully detected by automated, on-board EHM,
operating on snapshot data (short sections of time series data
that are recorded periodically during a flight).

Figure 2. Example anomalous behaviour detected in real
engine data. A) N2 time series for both sister engines, B)
zoom in on anomaly location in N2, C) Histogram of r(N2),
D) P30 time series for both sister engines, E) Zoom in on
anomaly location in P30, F) Histogram of r(P30).

A data set containing a range of measured engine parameters
across a series of consecutive flights has been collected. The
data set contains 18 flights of data, the anomaly was detected
at flight 15.

4.2. Implementation

In order to perform automatic anomaly detection on the de-
scribed data set the inter-engine variation analysis procedure
described above is performed. Inter-Engine residuals are
computed for the measured engine data for each flight. In
order to train the MoE model the model inputs and outputs
must first be defined. The model output is chosen as r(P30),
where r(·) indicated the inter-engine residual. The model
inputs are chosen as r(T20), r(P20) and r(N1). T20 and P20
are the temperature and pressure at the inlet to the combusted
respectively and N1 is the low power shaft speed. The inputs
are enriched by the inclusion of second order polynomials
and a DC term.

The MoE model is initialised by assigning each data point to
an expert at random. The model is trained using the first data
set (the first flight in the series). The model is then used to
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Figure 3. Variance of inter-engine residuals and normalised
inter-engine residuals across a series of consecutive flights.

predict the chosen output inter-engine residual for each of the
remaining data sets using the respective model inputs in order
to compute the normalised inter-engine residual.

In order to show that the bias in the residuals has been
reduced histograms of the predicted output parameter
are produced. The method considered to be successful
if 1) var(R) < var(y) for healthy data sets, and 2) if
var(R) > var(y) for data sets containing anomalies.

4.3. Results and discussion

It is observed that the variance of the normalised inter-engine
residual is less than the variance of the output inter-engine
residual for the majority of the flights (Excluding flights 12,
13, 15 and 16), see Figure 3. For these cases the method is
successful in reducing the explainable variation in the inter-
engine residuals, resulting from the difference in engine con-
dition or from measured external disturbances. Histograms of
the inter-engine residuals and normalised inter-engine resid-
uals for the first four flights show that the procedure success-
fully normalises the data and reduces the DC offset that is
present in the measured residuals, see Figure 5, top panels.

The four flights which coincide with the instances where the
normalised inter-engine residual is greater than the variance
of the output inter-engine residual have observably different
histograms to the other flights. In each case, a significant
portion of the data is distributed away from the origin, indi-
cating large residuals, see Figure 5, bottom panels. A manual
investigation into the data sets for flights 12, 13 and 16 has
discovered instances of the signature originally observed in
flight 15. These anomalies were not originally detected using
current EHM methods. This may be because they were either
of a smaller magnitude, or because they fell outside of the
snapshot data.

The detection of new anomalies in the data set indicates that

Figure 4. Time series inter-engine residuals and estimated
normalised inter-engine residuals for flight 15.

the normalised inter-engine residual has greater sensitivity to
the presence of anomalies. The histograms of the inter-engine
residuals and normalised inter-engine residuals for flights 12,
13, 15 and 16 show that the nominal data remains distributed
around zero while the anomaly has caused new distributions
located at an offset. see Figure 5, bottom panels. In Flight 15,
for which current methods were successful in identifying the
anomaly, significant peaks are seen in both the inter-engine
residuals and normalised inter-engine residual, although the
effect is more severe in the latter case.

In flights 12, 13 and 16 the anomalies have little effect on
the distribution of inter-engine residuals and so the anomalies
may not be detectable. The variance of the inter-engine resid-
uals is also comparable to the nominal flights, such that it is
not possible to differentiate the anomalies from other sources
of variation, see Figure 3. In comparison, there is a clear dif-
ference in the magnitude of the variance of the normalised
inter-engine residuals between nominal flights and those con-
taining anomalies. Observing the residuals as a time series
this effect is clear, see Figure 4. Before the anomaly occurs
the normalised inter-engine residual (red) has a smaller varia-
tion than the inter-engine residual (Black), the anomalous en-
gine behaviour (starting at around sample time 9000) causes a
much larger difference in the normalised inter-engine residual
than in the inter-engine residual.

5. CONCLUSION

The purpose of this study is to demonstrate a method for
reducing the influence of both normal differences in engine
health and measured external disturbances in the inter-engine
residuals, while being sensitive to anomalous behaviour. To
this end, inter-engine variation analysis is introduced, mak-
ing use of inter-engine residuals as input-output data to train
a MoE model. The MoE model can make predictions on the
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Figure 5. Healthy data figure.

output for new input data. A normalised inter-engine resid-
ual is then computed which is used as a new variable for the
purpose of anomaly detection.

Methods for the detection of anomalies are not discussed,
rather it is demonstrated that the normalised inter-engine
residual is more amenable to such methods. It hence replaces
the traditional method of novelty detection that requires
the generation of a normality model. Such a normality
model may be hard to achieve for a system that displays
highly complex behaviour such as a GTE. The case study
demonstrates the application of the developed method on a
real data example. The method is successful in both reducing
inter-engine variation due to explainable behaviour, as well
as increasing sensitivity to anomalous behaviour. The detec-
tion of previously undetected fault signatures in the data set
indicates an increase in detection performance in comparison
to current methods. The method has been implemented
by our industrial partners and has been demonstrated to
perform well in the detection of anomalous behaviour with a
significant reduction in false positives.
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