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ABSTRACT

A full-service maintenance contract covers all future costs of
both preventive and corrective maintenance over a predeter-
mined time horizon in exchange for a fixed upfront price. Due
to the stochastic nature of the maintenance costs the determina-
tion of the correct break-even price of such a contract is a key
challenge. We set out a data-driven methodology to provide
insight in the future maintenance costs within a full-service
contract. This methodology involves building predictive mod-
els for the frequency of failure and the associated costs taking
into account machine and customer characteristics. Not only
will our approach lead to a break-even price driven by the anal-
ysis of relevant historical data, it also leads to a classification
of the customer base. This classification may in turn enable
price discrimination of future service contracts.

1. INTRODUCTION

Full-service maintenance contracts are common practice in
industry involving the maintenance of capital goods. These
contracts cover all future costs of (preventive and corrective)
maintenance and potentially also down-time compensation
over a predetermined time horizon. In this paper we consider
these contracts from the viewpoint of the seller of the contract,
being the service provider. The buyer of the contract is the
user of the equipment and can be considered the customer
of the service provider. The main advantage of a full-service
maintenance contract for customers is that they no longer bear
the risk of stochastic maintenance cost but only pay a fixed
service fee. The risk of facing maintenance, be it preventive or
corrective, and its associated costs is transferred to the service
provider. Moreover, to protect against the moral hazard of
being served later than on-call customers, guaranteed repair
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times can be added to the contract and compensation is paid
by the service provider in case these are not fulfilled (Huber &
Spinler, 2012). If this compensation is not present, the service
agent has the opportunity to postpone the maintenance for
his full-service clients in favour of the maintenance visits for
on-call clients since the latter generates new revenue.

Alternatives for a full-service maintenance contracts are on-
call service and performance-based contracts. On-call service
provides maintenance on-call, in other words the customer
contacts the service provider in case of failure and a corrective
maintenance will result. In contrast to the full-service mainte-
nance contract, there is no risk transfer to the service provider
and consequently the customer bears all the maintenance risk.
On-call service and full-service maintenance contracts focus
on the time and materials spent to determine their price and
as such can be considered resource-based contracts (RBC).
Contrarily, performance-based contracts (PBC) (Kim et al.,
2017) do not guarantee parts, labor or other resources, however
they insure availability of the equipment. The compensation
for these types of contracts is based on performance of the
underlying product. The literature comparing resource-based
contracts and performance-based contracts is quite vast (Kim
et al., 2017; Bakshi et al., 2015; Kim et al., 2010) and relies
heavily on game-theory.

Accurate price setting is a major challenge for full-service
maintenance contracts. The stochastic nature of the costs cov-
ered by the full-service contract requires a more sophisticated
methodology than the on-call service contracts, which is sim-
ply priced based on materials used and time spent. A simple
approach to pricing full-service maintenance contracts could
be based on expected total historical costs incurred over the
contract period plus a safety margin, e.g. a factor reflecting
the risk-averseness of the service provider times the standard
deviation of the historical total costs. Such an approach does
not depend on careful statistical analysis of data collected on
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historical failure events, their corresponding corrective main-
tenance costs and the characteristics of the machine and the
customer. To describe the total costs incurred during the con-
tract period, often pricing relies on a separate analysis of the
building blocks of the total costs, that is the frequency of fail-
ures and their impact or severity (Huber & Spinler, 2012; Luo
& Wu, 2018b,a). However, these authors do not analyze data
on historical failures and associated costs, nor do they take
characteristics of the customer or the machine into account.
As a consequence, price differentiation is impossible and all
customers will pay the same price for a contract with the same
conditions. This may lead in turn to a loss of customers, since
good customers, who take good care of their equipment, will
pay too much. Moreover, because of the complexity of a full-
service, a naive pricing strategy based on the overall average
cost realized on historical contracts could be detrimental to the
profitability. This particularly holds true in an era of big data
and data analytics where the collection and statistical analysis
of data provides useful insights to many decision support sys-
tems, including tariff plans of full service contacts. Inadequate
pricing will make it hard to exploit the financial potential of
extended service business (Rapaccini, 2015). Market research
on service contracts suggests that only 50% make modest ben-
efits and, even worse, 25% lose money (Hancock et al., 2005;
Ulaga & Reinartz, 2011).

A good pricing methodology should take into account at least
the basic underlying price drivers: frequency or arrival of fail-
ure, their recurrence over time, types of failure and associated
costs. A more involved approach would allow for the integra-
tion of customer information, e.g. industry sector and country
of residence, and machine characteristics, e.g. temperature
measurements on connected machines. Using such risk factors
then allows for machine and customer specific pricing based
on a proper risk assessment. A pricing strategy driven by data
analytics is inspired by the practice of insurance pricing, where
predictive models are extensively used to analyze the number
of claims (frequency) and their corresponding impact or cost
(severity), in the presence of risk factors (Henckaerts et al.,
2018).

Rapaccini (2015) presents a general overview of the literature
on pricing service contracts. He distinguishes three approaches
to price such a contract: first, the price can be based on the
predicted costs under the contract; second, it can be based
on the perceived value of the full-service contract; third, it
can be benchmarked against the price of similar contracts
offered by competitors. We focus on cost-based pricing, where
the service agent determines the price based on the expected
cost of maintenance and repair plus a desired profit margin.
However, the stochastic nature of the frequency of failures and
the severity makes this a non-obvious exercise.

With focus on pricing of full-service maintenance contracts,
Huber & Spinler (2012) describe a value-based pricing ap-

proach for a full-service repair contract, which doesn’t include
preventive maintenance. First, they focus on the failures and
their associated costs, which are modelled independently with
a non-homogeneous Poisson process and a distribution with
finite support respectively. The latter is chosen since the repair
cost will always be bounded from below by a minimum cost,
the basic diagnostic cost, and from above by a maximal cost,
the cost of replacement. This leads to cost-based price. Then,
they determine the value-based price using a mean-variance
utility optimization scheme.

A full-service maintenance contract bears significant resem-
blance to the non-renewing free replacement warranty (NFRW)
policy, where the manufacturer provides repair or replacement
of a product at no cost. Luo & Wu (2018b,a) optimize the
warranty policy, by determining an optimal warranty price and
the optimal length of the warranty period, for different product
types collectively. Their approach is inspired by mean-variance
portfolio optimization (Markowitz, 1952). They incorporate
dependencies between different product types, e.g. different
car models by Ford, to deal with shared components, e.g. a
particular type of engine, similar design and same produc-
tion lines using copula theory. Analogous to Huber & Spinler
(2012) they consider the incoming claims and their associated
costs to be statistically independent.

A full-service maintenance contract can be considered an insur-
ance covering the maintenance, both preventive and corrective,
costs during a certain period of time. The actuarial literature
therefore provides a rich source of statistical techniques which
are inspiring for the case of pricing of full-service mainte-
nance contracts. A first key concept in insurance pricing that
is equally valid for full-service maintenance contracts, is the
frequency-severity approach of handling claims or incurred
costs, see e.g. Henckaerts et al. (2018) and Verbelen et al.
(2018). A second element of insurance pricing is the use of
risk factors to reflect the heterogeneity of the risks in the
portfolio (Henckaerts et al., 2018). To avoid lapses in a com-
petitive market, many rating factors (e.g. age, gender, postal
code area) are used to classify risks and differentiate prices
of an insurance product. Pricing through risk classification is
the mechanism for insurance companies to compete and to
reduce the cost of insurance contracts. Insurance companies
maintain large databases with policy(holder) characteristics
and claim histories and use these to build risk based pric-
ing models. Pricing is challenged by new evolutions in data
availability and an increasing focus on individual risk based
pricing. The current state-of-the-art, see Denuit et al. (2007)
and De Jong et al. (2008) for an overview, uses generalized
linear models (GLMs), to include risk factors in the frequency
as well as the severity model. This idea is new in the context
of pricing full-service maintenance contracts and will be used
to detect which risk factors indicate significant differences
in the expected number of failures on the one hand and the
expected cost incurred on the other hand. As such, a tariff plan
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that differentiates prices between different customers results.
A third element commonly used in actuarial pricing are pre-
mium principles (Kaas et al., 2008). These principles dictate
the premium or price of the insurance with respect to the risk-
averseness of the insurer. In short, a risk-neutral insurer will
be satisfied if the premium is equal to the expected value of
the costs incurred during the policy period of the insurance
contract. However, a risk-averse insurer will want to add some
extra safety margin. Premium principles will give the service
provider strategies to determine these safety margins while
accounting for the distributional properties of the incurred
costs.

Whereas Huber & Spinler (2012) set out a stochastic model
for the frequency of failures and associated costs to determine
the price of a full-service repair contract, they do not consider
regression procedures to fit their model on data. Motivated
by the literature on warranty contracts and insurance pricing,
our paper extends the current literature by introducing a data-
driven pricing methodology, which accommodates for price
differentiation based on the assessment of risks as pricing
actuaries do. Hereby our focus is on a full-service contract
involving both maintenance and repair. This is in line with
Luo & Wu (2018b)’s call for data-driven methodologies for
warranty contracts.

Since the regression relies on the availability of data from
the service provider and the collection of such historical data
is not obvious, we will test our methodology on simulated
data first. A simulation engine is developed that is capable of
simulating both time to failure data, and as such the number of
failures during a certain period of time, and maintenance costs
data which reflect as good as possible the real data a service
provider could have available. We choose to simulate our data
in the most granular way possible to maximise the applicabil-
ity of our methodology. We then apply the regression models
to our simulated data and a break-even price is determined.
On the one hand we consider the frequency of failure and the
maintenance costs to be statistically independent, in line with
Huber & Spinler (2012), on the other hand our approach will
also include predictive models. These predictive models will
be inspired by the regression models used in actuarial science
and medical statistics for frequency and severity modelling.

The rest of the paper has the following structure. In Section 2,
we introduce our pricing methodology and associated notation.
Section 3 deals with setting up our simulation. In Section 4,
predictive regression models are introduced to estimate the
break-even price. The conclusion follows in Section 5.

2. A FREQUENCY AND SEVERITY APPROACH FOR PRIC-
ING FULL-SERVICE MAINTENANCE CONTRACTS

We consider a full-service contract covering all maintenance
and repair costs during a period [t, t + ∆t], where ∆t is the

duration of the contract. During the duration of this contract,
a number of (preventive) maintenance actions are planned,
which are already scheduled at initiation of the contract. The
preventive maintenance scheme can be comprised of different
types of maintenance actions. The cost of such a preventive
maintenance can be estimated quite well, although there may
be some small fluctuations between the actual cost and the
planned cost of the maintenance. In addition to these preven-
tive maintenance visits, the contract also covers the costs of the
corrective maintenance visits due to failures that are unplanned
and due to malfunctioning of a component of the machine that
requires repair or even replacement. We distinguish between
different types of failures depending on the component that
causes the machine to stop working. The costs associated with
failures are highly uncertain.

The total, aggregated failure cost F (∆t) covered by the con-
tract is expressed as

F (∆t) =

nf∑
i=1

Nf,i(∆t)∑
j=1

Xi,j , (1)

where nf is the number of types of failures covered by the
contract, Nf,i(∆t) the number of failures of type i that occur
during the contract period [t, t + ∆t] and Xi,j the associated
cost of failure j of type i.

The total, aggregated preventive maintenance cost M(∆t) is
expressed as

M(∆t) =

nm∑
i=1

nm,i(∆t)∑
j=1

Si,j , (2)

where nm is the number of types of maintenance. nm,i(∆t) is
the number of maintenance actions of type i planned during
the duration of the contract. Since these maintenance actions
are planned, nm,i(∆t) is usually deterministic and that will
be our assumption here. Si,j is the associated cost of the jth
maintenance of type i. In general, Si,j can be considered a
random variable, but this must not be the case. In the case of
stochastic costs Xi,j and Si,j we will assume their distribution
to have a finite support (Huber & Spinler, 2012). In line with
the literature (Huber & Spinler, 2012; Luo & Wu, 2018b,a;
Henckaerts et al., 2018) we consider the arrival of failures and
the associated costs to be statistically independent. The total
aggregated cost C(∆t) covered by the service contract is then

C(∆t) = F (∆t) + M(∆t). (3)

We should however keep in mind that the preventive mainte-
nance scheme will influence the occurrence of failures. Al-
though the notation may lead to believe the terms F (∆t) and
M(∆t) are statistically independent, this is not necessarily the
case. An extra source of costs covered by the contract could
come from downtime compensation, which is a compensation
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paid by the service agent in case the corrective maintenance is
not executed within a predetermined time window (Huber &
Spinler, 2012). However, we do not consider these costs here.

In Figure 1 we illustrate the timeline of a contract during the
coverage period [t, t + ∆t]. On the horizontal axis, indicat-
ing the time dimension, we display the different events: the
planned preventive maintenance actions and the failures of
different types. The height of the vertical lines, for every ac-
tion, represents the size of the associated cost. On the vertical
axis we plot the probability density functions of the costs to
illustrate their stochastic nature. Ti,j denotes the inter-arrival
time j between failures of type i , see Figure 1.

We introde the price P , paid at initiation of the contract, and
profit R at termination of the contract,

R = P − C(∆t). (4)

Our main interest is the determination of the break-even price
P ∗ for which the expected profit E[R] = 0. This leads to the
following expression for the break-even price P ∗,

P ∗ = E[C(∆t)]

= E

 nf∑
i=1

Nf,i(∆t)∑
j=1

Xi,j +

nm∑
i=1

nm,i(∆t)∑
j=1

Si,j


=

nf∑
i=1

E[Nf,i(∆t)] · E[Xi,j ]

+

nm∑
i=1

nm,i(∆t) · E[Si,j ],

(5)

where for the latter equality we assumed independence be-
tween frequency and severity. Equation (5) shows how the
break-even price depends on the frequency of failure and the
number of preventive maintenance actions on the one hand and
the severity of failure and preventive maintenance on the other
hand. We illustrate the risk drivers involved in our full-service
contract for an example of a full-service maintenance contract
in Figure 1.

The heterogeneity between customers in the portfolio of the
service provider (Huber & Spinler, 2012) may justify a price
list that distinguishes between good and bad risks, as an in-
surance company typically does. This heterogeneity can be
reflected by introducing risk factors zk,l (Henckaerts et al.,
2018), where k is the customer and l the machine. We will
use observable and measurable risk factors to differentiate in
prices charged to the clients. These risk factors can be both
dynamic, e.g. temperature of the machine, as well as static, e.g.
the country of residence. The (conditional) break-even price

P ∗|zk,l for customer-machine risk profile zk,l is

P ∗|zk,l =

Nf∑
i=1

E[Nf,i(∆t)|zk,l] · E[Xi,j |zk,l]

+

Nm∑
i=1

nm,i(∆t) · E[Si,j |zk,l].

(6)

The goal is to estimate P ∗ for a portfolio of service contracts.
A first step is the collection of covariate information, i.e. risk
factors, and historical data on failures and costs. A second
step is the cleaning and exploratory analysis of the data. Fi-
nally, predictive models can be calibrated for E[Nf,i(∆t)|zk,l]
based on the historical failure data of the total portfolio of the
service agent, for E[Xi,j |zk,l] from the historical severity data
and E[Si,j |zk,l] from the historical severity of maintenance
data (Henckaerts et al., 2018).

3. A SIMULATION ENGINE FOR FAILURE EVENT AND
COST DATA ON SERVICE CONTRACTS

3.1. Motivation

Ultimately, our pricing methodology should be applied on
real company data. However, it is not obviousto collect de-
tailed historical data on various contracts and characteristics
of customers and machine. Setting up a simulation engine
is then an obvious first step. This has the added benefit of
flexibility because a lot of different scenarios can be gener-
ated. A simulation engine that generates failure times, failure
types, associated costs and preventive maintenance costs will
allow us to test performance and adequacy of statistical models
(R. Bender et al., 2005; Metcalfe & Thompson, 2006; Montez-
Rath et al., 2017) and to generate datasets reflecting real-world
datasets (Hendry, 2014).

3.2. Data

Generating data in the context of full-service contracts can be
a challenge since the simulation should include some complex
features as illustrated on the example shown in Figure 1. Mak-
ing abstraction of some features in the simulation process is
not necessarily an option since the generated datasets need
to reflect real-world data otherwise the results obtained will
not be transferable to real-world datasets (Montez-Rath et al.,
2017).

The first set of attributes of the dataset will have to deal with
failures and maintenance actions during the duration of the
contract. Regarding the preventive maintenance the dataset
must contain all times stamps of planned maintenance visits
and their associated costs as well as an indication for the type
of maintenance that was executed. The latter is only necessary
if there is a distinction between multiple types of preventive
maintenance. For the repairs, all times, associated costs and
indication of type of failure should be available. The timeline
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t t + ∆t
time0

costs
M: maintenance
F1: failure type 1
F2: failure type 2

S1,1 S1,2 S1,3 S1,4

M M M M

∗∗∗∗
X1,1

X1,2

F1 F1

∗
∗

T1,1 T1,2

X2,1∗
∗

X2,2

F2 F2

T2,1 T2,2

Figure 1. A full-service maintenance contract’s timeline: example of failure events and maintenance actions, and their associated
costs

from Figure 1 illustrates the occurrence of recurrent events
(Cook & Lawless, 2007), because failures of a specific type
may occur multiple times during the contract period. Metcalfe
& Thompson (2006), Jahn-Eimermacher et al. (2015) and
Pénichoux et al. (2015) describe recurrent event simulation in a
biostatistical framework. Since different types of failures may
occur, the simulation engine should also be able to generate
competing risks data (Beyersmann et al., 2009).

A second attribute of the data is in reflecting characteristics
of the customer and his machine. These so-called covariates
can be both time-independent (Metcalfe & Thompson, 2006;
Jahn-Eimermacher et al., 2015), e.g. the country where the
machine is operating, or varying over time (Hendry, 2014;
Pénichoux et al., 2015), e.g. temperature measurements of
machines’ most critical components. This part of the data
will serve as a basis for determining significant risk factors
(Henckaerts et al., 2018) and will consequently be used to
categorize new customers and new machines.

Thirdly, some less explicit attributes can be added to the
dataset. The data could contain particular subgroups which
are more prone to failure events than others. This additional
proneness to failure may not be explained by the observable
and measurable covariates but can be considered a stochastic
susceptibility or frailty (Pénichoux et al., 2015). We could
also keep into account that machines are not at risk for a
failure during the execution of a maintenance operation. Jahn-
Eimermacher et al. (2015) demonstrate how to incorporate
such risk-free intervals. Alternatively, we can consider main-
tenance operations as instantaneous, in other words the ma-
chines are at risk for a new failure immediately after a failure
occurred.

3.3. Set up

Each simulated dataset considers n machines with a randomly
assigned set of covariates, both fixed and time-varying. For
each machine we simulate Nf,i(∆t) failure times and their as-
sociated costs for each failure type i. This results, for a specific
machine, in the following tuples for each event (i, Tk, X, I)
with k = 1, . . . ,

∑
i Nf,i and where i indicates the failure

type and , Tk the event time, X the costs and I indicates if the
event is censored or not. Censoring will indicate if the contract
is observed until termination or if it is still ongoing. For each
machine, a schedule with preventive maintenance actions is
set up and the associated costs are simulated. The simulated
data have a similar set-up as the time-line of the machine, see
Figure 1.

4. LOSS ANALYTICS FOR PRICING OF SERVICE CONTRACTS

Having simulated data from the machine described in Section
3 available we will now discuss the data analytic tools at
our disposal to estimate the expected values in equation (6)
from data. The regression consists of two parts, one for the
frequency of failure and one for the severity of failure.

We can distinguish two types of regression models for the fre-
quency. On the one hand, we can make use of counting models
that focus on the number of failures during the contract period.
On the other hand, we can employ time-to-event models that
model the time to failure. The latter has the advantage to make
predictions about the remaining period the machine is still un-
der contract. The main counting model is Poisson regression
but many extensions are available (Denuit et al., 2007). For
time-to-event models, the key model is the Cox model (Cox,
1975). Recent work from A. Bender et al. (2018) shows that
a large class of time-to-event models can be represented by
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generalized additive models.

To model the severity of the failures multiple distributions
can be fitted. The distributions should however reflect the
properties of the costs, i.e. costs are positive and they are
bound from below and above (Huber & Spinler, 2012). Popular
choices in insurance are the exponential, the lognormal, the
gamma and the inverse Gaussian distribution (Frees, 2009).
Although these distributions have infinite support they can
be reduced to a finite interval. It is also possible to include
covariate in the regression procedure for the severity.

5. CONCLUSION

In this paper we set out a data-driven methodology for pricing
full-service maintenance contracts. Our methodology builds
on the work of Huber & Spinler (2012). The extensions pro-
vided here mainly focus on calibration of predictive models for
frequency of failures and the associated costs, which results in
a break-even price driven by the analysis of relevant historical
data. These models do not only take into account the failure
times and the associated costs but also customer and machine
characteristics. A benefit of this approach is discrimination of
the price based on the customer’s risk profile. We also develop
a simulation engine to test our methodology in a variety of
settings.

The pricing methodology in its current form is inspired by a
priori ratemaking in insurance, where prices differ according
to observable and measurable characteristics of the insured
risk. Next to this, insurers take the remaining unobservable
heterogeneity among risks into account with an a posteriori
pricing correction. This correction is based on the history of
claims reported by the policyholder. Credibility theory and a
bonus malus scale are examples of such a posteriori correc-
tions (Denuit et al., 2007). Adding a posteriori ratemaking to
the current methodology is an interesting extension and would
lead to a more advanced price discrimination scheme.

In its current state, our model does not incorporate condition-
based maintenance (CBM). However, it could be an inter-
esting avenue to explore the effects of CBM integration on
our data-driven pricing methodology. This could be done by
considering a failure type that can be detected using sensor
information.
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