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ABSTRACT

Suspension defects in passenger trains reduce safety and com-
fort in rail transport systems. We investigated the feasibility
of detecting such defects using dynamic wheel load differ-
ences (DWLDs), which are measured from trains in operation
using sensors in the track.

We found that DWLD data shows considerable variability but
in a consistent manner, and developed a method that purifies
the data to improve signal-to-noise. Further, we developed an
algorithm that uses the purified DWLD data to detect anoma-
lous events in suspension imbalance, which is indicative of a
defect or repair event. Our algorithm further provides a diag-
nosis of an anomalous event as related to either the primary
or the secondary suspension system. We validated our algo-
rithm using a limited set of maintenance records and found a
high detection and correct classification rate, although more
extended validation is needed with more maintenance records
and DWLD data.

In sum, our work indicates a promising avenue of high-fre-
quent, automated detection and diagnosis of suspension de-
fects, which would contribute to efficient, economical and
save operation of railway vehicles.

1. INTRODUCTION

With more than a million passengers every day, railways are
a popular means of passenger transport in the Netherlands.
This critically depends on efficient, economical, reliable and
safe operation of railway vehicles, which requires minimal
probability of derailment and high passenger comfort. Those
may negatively be affected by defects on suspension systems
used in wheel sets and bogies of passenger coaches. To en-
sure a safe and comfortable ride, the vibrations that originate
from irregularities on the track are damped by the suspension
system of each coach. This suspension is shown in Figure 1:
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Figure 1. Simplified side view of a coach (a) and two
wheelsets in a bogie (b), with primary (b.1) and secondary
(b.2) springs.

every bogie consists of two wheelsets that are connected to
the bogie with primary springs (item 1 in Figure 1). The bo-
gie itself is connected to the coach with secondary springs
(item 2 in Figure 1), which are supplied with compressed air.

The suspension system is inspected visually every few days
because of its impact on safety. However, defects or wrong
settings are not always visible with the naked eye due to the
location of the springs and the placement of surrounding com-
ponents. Therefore it would be of great value to have an al-
ternative detection method that is automated depends less on
human factors.

In this paper we aim at developing such a detection method
based on dynamic wheel load differences (DWLDs), which
will be introduced in Section 2. Furthermore, in Section 2 the
physical interpretation of DWLDs in relation to suspension
defects is explained. In Section 3, a corrective method is de-
veloped to decrease variability in DWLDs, of which a signif-
icant amount can be attributed to systematic factors. In Sec-
tion 4, we propose an algorithm to detect the sudden changes
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in DWLDs which might indicate defects or repairs in wheelsets
or bogies. In Section 5, we present the results of verification
of the algorithm, indicating a high detection rate. Section 6
concludes the paper.

2. SUSPENSION DEFECTS & WHEEL LOAD DIFFERENCES

The Dutch rail infrastructure manager ProRail has installed
the ‘Gotcha‘ measurement system (Boom, 2007) at about fifty
locations in infrastructure across the Netherlands. Primary
goals of this system are the measurement of wheel and axle
loads and the detection of wheel defects. NS, the primary
railway operator for passenger transport in the Netherlands,
uses these measurements to reprofile the wheels in case of
wheel defects.

In the present work a potential secondary purpose of the Gotcha
system is explored: the detection of suspension defects. Since
suspension defects typically lead to an unbalanced wheel load
between the left and right wheel of a wheelset, the monitor-
ing of wheel load differences with Gotcha could provide an
alternative detection method of such defects.

A wheel load difference (WLD) is defined in Commission
Regulation EU (2014) No 1302/2014 as follows:

WLD = Q’l“ - Ql

7Qr+Ql’

where (); represents the wheel load of the left (i = [) or
right (¢ = r) wheel of the same axle. A WLD that deviates
from zero indicates an imbalance in the load distribution. A
negative WLD means represents an imbalance to the left side
of the train; a positive WLD an imbalance to the right side.

The static wheel load difference of new, overhauled and refur-
bished trains is measured inside the depot. This static WLD is
limited by European standards (Council of European Union,
2014) and therefore checked before the train is admitted to the
track. With the Gotcha measurement system, the wheel load
differences are computed using dynamically measured wheel
loads during operation; thus we refer to these dynamic WLDs
as DWLDs. Hunting oscillations can cause small DWLDs but
the amplitude of this oscillation is limited. Large DWLDs
can reasonably be assumed to have been caused by a new de-
fect, since structural skewness in the construction of the train
body is limited by the European standard for static WLDs be-
fore admittance. Therefore, in search for an alternative detec-
tion method for suspension defects, we start with exploring
DWLDs measured with Gotcha.

We expect a change in this measure when a suspension de-
fect occurs. Moreover, because of the type of defects (a bro-
ken spring; air leakage or a broken valve in the suspension
system), we expect this change to be sudden. Apart from
defects, a wrong setting of the height control bars in the sec-
ondary suspension system could also cause an imbalance in

20|
10}
§ ; %
a)
-
=
a
S 3 S s N i N
1’03,0 1‘05‘,0 1‘06,0 1’06,0 1‘01,0 1’0%,0 1‘@,0
20> I L\ ML\t 20> 8>
Date
Figure 2. DWLDs of one of the axles in a bogie with

an air leakage in the secondary suspension. Each dot is a
DWLD measurement in Gotcha, the line is the moving aver-
age DWLD over 50 measurements.

the suspension system. This will generate a sudden change in
DWLDs as well, right after adjustment of the settings. There-
fore, we will first focus on sudden jumps in the measurements
of DWLDs.

As a first step, we investigate DWLDs of a coach with a vi-
sually confirmed air leakage in the secondary suspension that
was repaired subsequently. DWLDs of one of the affected
axles are presented in Figure 2. Also, this figure shows the
substantial variance in DWLD measurements, which will be
further addressed in Section 3.

According to DWLDs in Figure 2, the defect is likely to have
occurred in the second half of May 2017. Furthermore, DWLDs
show an excessive jump back to values near zero when the
defect is repaired, as maintenance records show at the end of
July 2017.

Due to the stiffness of the coach and the construction of the
suspension system, a secondary suspension defect causes tor-
sion over the whole coach; the first bogie is unevenly loaded
in opposite direction from the second bogie. Therefore a de-
fect in one secondary spring is expected to affect DWLDs of
all axles of a coach in a systematic way. This is illustrated by
the data shown in Figure 3, which shows DWLDs of all axles
of this coach.

Secondly, we investigate DWLDs of a coach with a visually
confirmed primary suspension defect. Because the primary
suspension connects each axle to the bogie, a primary suspen-
sion defect is expected to cause torsion within one bogie, i.e.
to affect the DWLDs of two axles. In Figure 4 the behavior of
DWLDs of a coach with a primary suspension defect in axle
1 are shown. From this figure it is presumed that the spring
broke around the 10th of October, where a sudden change in
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Figure 3. DWLDs for all axles of one coach in which a sec-
ondary suspension defect occurs (end of May) and is repaired
(end of July).
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Figure 4. Moving average DWLDs (over 50 measurements)
for a coach with a primary suspension defect.

DWLDs of axle 1 occurs, while DWLDs of axle 2, 3 and 4
remain unaffected.

The repair date of the defects above coincides with a sudden
decrease of DWLDs in the affected axles. Although the date
of initiation of the defects is not known, a highly educated
guess can be made based on the sudden increase in DWLDs
some time period before the repair date.

Figures 2 to 4 indicate that detecting sudden changes in DWLDs

could be a feasible approach to detect suspension defects.
Furthermore, combining DWLDs of different axles in one
coach, enables us to indicate the location of origin of the de-
fect (primary or secondary suspension). Other investigated
cases show similar results, as shown more elaborately in the
verification in Section 5. However, as illustrated in Figure 2,
DWLDs show considerable variance which could hamper de-

a
& o N

W\ Alphen \\J ¢

W aan den,’ .

“\ Rijn", ‘Q }3I

W Ph

;" | ihse 2

o \ } 3ii
,'/ 1
T N H
=2y 1

A

~ 1 _——
< sTIzzo—---.
(O IR RY T

Figure 5. Figure 5: (a) Schematic map showing the loca-
tions and train direction with typical train directions for dou-
ble tracks (detector 1, 2) and single track (detector 3). (b)
Mlustration of DWLDs during one day measured by three de-
tectors numbered 1, 2 and 3. N indicates North.

tection of changes in DWLDs. In the next Section we explore
systematic sources of variance in more detail in an attempt to
reduce the variance, which we is needed for accurate detec-
tion of anomalous events in DWLDs.

3. REDUCING VARIANCE IN DWLDsS

As an example of the variance in DLWDs, Figure 5 shows
a train operated during one day, passing two detectors on
a double track (detectors 1 and 2) and a third detector on
a single track (detector 3) in two orientations (3i and 3ii).
Importantly, this train does not turn, meaning that eastward
passages along detectors 1 and 3 are with cabin A leading,
whereas westwards passages along detectors 2 and 3 are with
cabin B leading. It can be observed that for the same orien-
tation and detector, measurements are fairly consistent. They
are not expected to be identical due to other factors includ-
ing variation in of passenger load and detector measurement
errors. Yet there is substantial variability for different mea-
surements, not only as a function of detector but also of ori-
entation. This indicates a more complex interaction between
train, infrastructure and measurement system that goes be-
yond trivial calibration issues.

Such differences due to detector and/or orientation could re-
sult in excessive and sudden changes in DWLDs in a coach
if the set of detectors that are passed by the coach changes
abruptly. This is not a mere theoretical possibility: a change
of train schedule or train set assignments may result in a train
operating in another geographic region, and thus a change in
the set of detectors it passes. To reduce the occurrence of
sudden changes in DWLDs caused by a change of the set of
detectors that a train passes, the data can be purified by cor-
recting for these kinds of systematic factors. In order to do
that accurately, we will first assess the consistency of vari-
ance over different time intervals and different trains in Sec-
tion 3.1. Second, we will consider the amount of explained
variance by these systematic factors in Section 3.2, to con-
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Figure 6. (a) DWLDs measured for two halves of the VIRM-
IV fleet measured for different time periods (top and bottom
plots). Each bar represents measurements for a combination
of detector and train orientation. (b) Scatter plot of aver-
age DWLDs for each combination of detector and orientation
across the two halves.

clude on the purification method in Section 3.3.

3.1. Consistency of variability over time and trains

First we assessed the consistency of measurements over time
as a function of detector and orientation (see Figure 6a). As
an internal consistency check, we split all trains from one sub-
series (VIRM-IV) in two halves pseudo-randomly. To be able
to assess the temporal consistency, the first half of trains used
data from a three month interval (January-March 2017) and
the second half of trains from another non-overlapping three
month interval (April-June 2017). Thus we divided the data
into four subsets (half 1 Jan-Mar; half 1 Apr-Jun; half 2 Jan-
Mar; half 2 Apr-Jun), and compared two sets that have no
train and no timestamp in common.

Then we considered, for each sub-series half, DWLDs from
the first axle, and split these according to detector and train
orientation. We only considered passages in the ‘positive’
track direction, as this is the common direction for passages,
and we wanted to exclude the possibility of a small number
of passages skewing our results. For each combination of
sub-series half, detector and train orientation we computed
the median DWLD (we used the median and not the mean
to avoid effects from outliers caused by possible unknown
defects).

Finally, we computed the Spearman correlation between the
median values in the first half and the second half to assess
whether DWLD values were consistent across train sets and
over time. As shown in Figure 6b, DWLD values were highly
consistent with a Spearman correlation of 0.95 across the two
halves.

In addition we conducted a similar split-half analysis that
considered axle position, which also showed high consistency
for DWLDs over detectors and orientation (but somewhat puz-
zling, consistent anti-correlations between some pairs of axles);
details are shown in Appendix A.

3.2. Explained variance by systematic factors

Second, we considered the effects of variability more sys-
tematically by computing how much variance is explained by
each of four factors: detector, axle number, train orientation,
and train direction. We used a training set with three months
of DWLD data for one half of the VIRM-IV train sets, and a
validation set using the other half. We took any non-empty
subset of the four factors, resulting in 24 — 1 = 15 com-
binations. In the training set we split the data according to
the combination of factors, and computed the median value
of DWLDs. Then in the validation set we also split the data
according to the combination of factors, and in each split sub-
tracted the median value of DWLDs obtained from the train-
ing data to obtain purified testing data.

We then computed the variance of both the original validation
data and the variance of the purified validation data. Finally
we computed the amount of explained variance of the purifi-
cation process by subtracting the ratio of variance of purified
data to the variance of the original validation data from one.

Results for each of the 15 combinations of factors are shown
in Figure 7 for the VIRM-IV. These indicate that:

e the combination of orientation, axle and detector explains
around 50% of variance;

e the explained variance by these three variables is higher
than the explained variance by each variable alone, or by
a pair of two variables;

e the factor of train direction does not increase the amount
of variance explained.

We also considered three other train types operated by NS,
namely the ICM, SGM and SLT. For these series we observed
a very similar pattern of results. We note that a full under-
standing of the physical mechanism underlying this pattern
remains elusive. We have consulted experts from within NS,
ProRail and several other companies but did not manage to
reach a satisfying physical explanation yet. although we can-
not exclude the possibility of hardware-software interactions
in the Gotcha detectors (that we do not fully understand). We
hope that future research will lead to a better understanding of
the physical mechanisms underlying the pattern of data that
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Figure 7. (a) Explained variance in dynamic wheel load dif-
ference values as a function of combinations of orientation,
axle, detector, and train direction.

we observe.

3.3. Purification method

Despite currently lacking a full physical understanding of the
variability in DWLDs, our analyses support the notion that
DWLDs can be purified by computing a correction term for
each combination of orientation, axle and detector based on a
large set of measurements from multiple train sets and over a
long temporal interval. An illustration of the effect of purifi-
cation is presented in Figure 8, where the purified data shows
fewer outliers and less variance than the unpurified data. This
purified data can be used for a more sensitive detection of
suspension defects through Dynamic Suspension Imbalance
anomaly events, as described in the next section.

4. ANOMALOUS EVENTS IN DYNAMIC SUSPENSION IM-
BALANCE

‘We propose an algorithm to detect anomalous events in DWLDs,
which might indicate defects or repairs in wheelsets or bo-
gies. By integrating information across wheel-axles, as illus-
trated in Figure 2, this algorithm can also differentiate be-
tween defects in primary and secondary suspension. Next to

a high DWLD value, these defects can cause bogie diago-
nal imbalance or coach diagonal imbalance. All imbalance
values are grouped under the term Dynamic Suspension Im-
balance.

A preparation step in this algorithm is purifying the data as
described in Section 2. After purifying the data, we group
DWLDs based on a single passage of each coach; thus each
group consists of DWLDs of all axles during the passage of
a coach along a detector. In order to diagnose the cause of a
sudden change in DWLDs, we introduce two new quantities.
Using the purified data, we compute bogie diagonal imbal-
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Figure 8. (a) Unpurified and (b) purified DWLD data of one
axle of one train over time.

ance values Igéag%e through
diag DWLD; — DWLD,
Ibogie 1= 9
diag DWLD3; — DWLDy
Ibogie 2= 9
for two bogies in a coach, and the coach diagonal imbalance
128 values as
Jeoach _ DWLD; + DWLD; — DWLD3 — DWLD4
diag  — 4

where DWLD; ..., are DWLDs of the four axles in that coach.

Note that these formulas are very similar but not exactly iden-
tical to the definition in the Commission Regulation EU (2014)
as that definition uses wheel loads instead of wheel load dif-
ferences. We cannot use the Commission Regulation EU def-
inition in combination with the purification process described
in section 3, as the purification terms are based on DWLD val-
ues, not on wheel loads. However, we compared the values
from our definition with those from the Commission Regu-
lation EU’s definition (using unpurified data), and found that
the bogie and coach diagonal imbalance values show a corre-
lation between 99.8% and 100.0%, supporting our formulas
for the diagonal imbalance values.

In summary, we use three types of quantities (all based on
the purified data): DWLDs, which provide information about
(im)balance in individual wheel sets; Ig('):fe, quantifying tor-
sion at the bogie level and indicative of primary suspension

defects; and [, f‘i)zﬁh , quantifying torsion at the coach level and
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Figure 9. (a) Examples of (a) bad jump, (b) good jump, and
(c) extreme value event. Each plot shows dynamic suspension
imbalance (DSI) values (vertical axis) as a function of time
(horizontal axis). See the main text for details.

indicative of secondary suspension defects. Collectively we
refer to DWLDs, Io% and I9*¢ as Dynamic Suspension
Imbalances, or DSIs. For all three types of DSIs, a value
near zero indicates good balance, whereas a value deviating

strongly from zero may indicate a suspension defect.

For each type of DSI, we consider three possible anomalous
events of interest: (a) a bad jump, (b) a good jump, and (c) an
extreme value; see Figure 9.

First, a bad jump event (Figure 9a) occurs when there is a sud-
den increase of the absolute DSI value. This may indicate that
a defect occurred, such as a broken spring in the primary sus-
pension system (leading to a high DWLD and/or Igéagg;e value),
or a leak in the secondary suspension system (leading to a
high DWLD and/or I3 'value). To detect a jump, we take
a ‘pivot’ time point, and then take a certain number of mea-

surements before the pivot point (the pre-period) and a cer-

tain number of measurements after the pivot point (the post-
period). For a bad jump event to occur, we define the jump as
the difference between the DSI values in the pre-period and
the post-period and require that:

e The absolute DSI value in the post-period must exceed a
threshold value thrjymp exir. Specifically, we require that
the DSI values deviate significantly more from zero than

a threshold DSI, according to a probability threshold p;,., exie

from a Wilcoxon signed-rank test;

e The jump must be large enough in effect size Apag jump
so that the absolute difference between the medians of
the pre- versus post-period DSI values exceeds an effect
size threshold; and statistically significant so that the pre-
versus post-period show different medians according to
a probability threshold py,q jum, from a Wilcoxon-Mann-
Whitney test.

Second, a good jump event (Figure 9b; within NS also known
as a cake event to symbolize improvements) occurs when
there is a sudden decrease of an absolute DSI value. For a
good jump event to occur, we require that:

e The jump must be sufficiently large enough in effect size
Agood jump and statistically significant according to a pro-
bability threshold p, o jump from a Wilcoxon-Mann-Whit-
ney test (in similar fashion as a bad jump, although dif-
ferent thresholds can be used);

e The improvement must be large enough in effect size: the
difference of the absolute median DSI value during the
post-period minus the that of the pre-period A,,, must
exceed an a threshold value.

Third, an extreme value event (Figure 9¢) occurs when a DSI
value deviates strongly from zero. It is aimed to serve as an
additional safety net for cases where a defect developed grad-
ually thus a bad jump was not detected. Extreme value events
are detected using only data from the post-period. For an ex-
cessive value event to occur, we require that:

e The absolute DSI value in the post-period must exceed a
threshold value thre according to a probability thresh-
old p,,, from a Wilcoxon signed-rank test.

We note that detection of these events depends on setting var-
ious threshold parameters, which in turn affects the balance
between false positive and false negative rate. We have cho-
sen initial threshold parameters that result in the detection re-
sults reported in this manuscript, and plan to further optimize
these values based on analyses on future maintenance reports
and DWLD data.

For time series analysis, we move the pivot point over time,
and for each temporal position see if an event was detected.
Since neighboring pivot points also show considerable over-
lap of data points, detected events tend to cluster temporally.
To reduce such clusters to a single event, we perform the fol-
lowing steps:
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Truth DSIs
Case | Typeof Suspension] Anomalous Suspension
issue event
1 defect  primary yes secondary!
2 defect secondary | yes secondary
3 defect  secondary | yes secondary
4 defect  primary yes primary?
5 defect secondary | yes secondary
6 setting  secondary | yes secondary
7 setting  secondary | yes secondary
8 setting  primary yes primary

Table 1. Results of verification

! wrong diagnosis of defect. 2 anomalous event detected on
neighboring axle. Abbreviation: DSI, Dynamic Suspension
Imbalance.

1. We consider all time points and find the strongest event
based on effect size.

2. We then eliminate neighboring time points within a cer-
tain temporal distance of the same event type from con-
sideration.

3. TIteratively we find the next strongest event.

4. We eliminate its neighboring time points from consider-
ation.

These four steps are repeatedly performed until no more e-
vents are found. This analysis is done separately for each
coach; event type (bad jump, good jump, and extreme value);
DSI type and position number (i.e. each wheel set’s DWLD,
bogie’s I3 and coach’s 1% values are analyzed -
g bogie coach yzed sepa
rately). The anomalous events that are obtained in this man-
ner can then be used for subsequent analyses and/or as the

basis to send alarms to maintenance personnel.

5. VERIFICATION

The original DWLDs have already been available in a real-
time monitor to maintenance and reliability engineers in 2017.
However in this monitor the proposed purification and au-
tomatic detection of sudden changes or excessive DSIs de-
scribed earlier were not applied, because these were not yet
available at that time. Eight cases of extreme DWLDs in this
monitor have been investigated in the depot. The maintenance
personnel has judged visually in DWLD monitor what they
considered ‘extreme’ values. The result of this investigation
in the depot is shown as ‘Truth’ in column 2 and 3 of Table 1.
In all cases of extreme DWLDs, issues were found in the
suspension system. Two types of issues are distinguished in
both the primary and secondary suspension: defects (broken
spring, valve defect, air leakage) and settings (uneven length
of primary springs, wrong setting of height control bars of
secondary springs).

For each of these cases we tested our algorithm, resulting in
the last two columns of Table 1 as DSIs (Dynamic Suspension
Imbalances). For the computation of the anomalous events

(bad jumps, good jumps and excessive values), the purified
DSIs were used. In one case (case 4 in Table 1) the suspen-
sion defect did result in an anomalous event detected on the
wrong axle (axle 3 instead of axle 2) in our algorithm, pos-
sibly caused by a coach imbalance in combination with an
axle effect that was too small to be detected with our current
threshold settings. Furthermore, in one case (case 1 in Ta-
ble 1) the DSI type seems to have been diagnosed wrongly:
a secondary suspension defect instead of a primary suspen-
sion defect. However, according to the high I this coach
is very likely to have had a secondary defect as well, that
obscured the primary defect. The secondary suspension sys-
tem was not further investigated once the primary defect was
found due to time constraints, so this secondary defect is not
(dis)confirmed yet.

These results show that the use of purified DWLDs and de-
tecting anomalous events based on DSIs are a promising me-
thod for detecting suspension defects. We plan to test and
verify the algorithm for all train types for a longer period of
time, so that its settings can be optimized to detect and diag-
nose anomalous events more accurately.

6. CONCLUSION & DISCUSSION

In summary, our results indicate a promising avenue for de-
tection of suspension system defects. More work is needed
to understand and reduce the observed variance in measure-
ments. Furthermore, we will validate our approach further
by matching excessive changes in dynamic suspension im-
balance values against suspension system defects or mainte-
nance events. This could form the basis of automated de-
tection and diagnosis of suspension system defects during
service, which would contribute to efficient, economical and
save operation of railway vehicles.

After further verification and optimization, our method could
be used to decrease the frequency of visual inspections of the
suspension system.
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ABBREVIATIONS & SYMBOLS

DWLD dynamic wheel load difference
DSI dynamic suspension imbalance

Igéagi dynamic bogie diagonal imbalance
18 dynamic coach diagonal imbalance
ICM intercity materieel

NS Nederlandse Spoorwegen
SGM stadsgewestelijk materieel
SLT spinter light train

VIRM  verlengd interregion materieel
WLD wheel load difference
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Figure 10. cross-correlation heat map showing the correla-
tions for all axle-combinations. Each cell represents the cor-
relation of the DWLDs formed by all combinations of de-
tectors and orientation (c.f. Figure 6b). Note the curiously
strong positive and negative correlations between, for exam-
ple, axles 1 to 4.
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