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ABSTRACT

Conventional structural health monitoring methods for inter-
preting unlabeled acoustic emission (AE) data typically rely
on generic clustering approaches. This work introduces a
novel approach for analyzing sequential and temporal acous-
tic emission (AE) data streams by enhancing a Multi-Layer
Perceptron (MLP) with a contrastive metric learning loss func-
tion (MLP-CMLL)and Time Series K-means (TSKmeans) clus-
tering. This dual approach, MLP-CMLL with TSKmeans,
is crafted to refine cluster differentiation significantly. This
method is designed to optimize cluster differentiation, bring-
ing similar acoustic patterns closer and distancing divergent
ones, thereby improving the MLP’s ability to classify acous-
tic events over time. Addressing the limitations of traditional
clustering algorithms in handling the temporal dynamics of
AE data, MLP-CMLL with TSKmeans approach provides
deeper insights into cluster formation and evolution. It promises
enhanced monitoring and predictive maintenance capabilities
in engineering applications by capturing the complex dynam-
ics of AE data more effectively, offering a significant ad-
vancement in the field of structural health monitoring. Through
experimental validation, we apply this method to character-
ize the loosening phenomenon in bolted structures under vi-
brations. Comparative analysis with two standard clustering
methods using raw streaming data from three experimental
campaigns demonstrates that our proposed method not only
delivers valuable qualitative information concerning the time-
line of clusters but also showcases superior performance in
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terms of cluster characterization.

Keywords: acoustic emission (AE), sequentially appear-
ing clusters, data streams, structural health monitoring,
contrastive metric learning, multi-layer perceptron (MLP)

1. INTRODUCTION

Structural Health Monitoring (SHM) is essential to ensuring
the safety, longevity, and efficient maintenance of engineer-
ing structures across civil, mechanical, and aerospace fields.
This discipline employs advanced technologies to proactively
detect and address damages, aiming to avert catastrophic fail-
ures and optimize maintenance efforts. Among various SHM
applications, the precision monitoring of bolted connections
is particularly critical, given its profound impact on the struc-
tural integrity and stability of significant constructions such
as bridges, aerospace structures, and wind turbines (Bolognani
et al., 2018).

The vulnerability of bolted connections to loosening—and
the profound implications of such—was dramatically under-
scored by the 2015 collapse of a 129-meter wind turbine in
Sweden (Swedish Accident Investigation Authority, 2017).
This incident, attributed to bolt looseness, resulted not only in
significant financial loss but also highlighted the urgent need
for early detection systems to prevent such disasters. While
traditional bolt inspection techniques are effective, they are
notably labor-intensive and can significantly interrupt opera-
tional workflows. This has led to a shift toward non-destructive
testing (NDT) methods (Hota & Sadowski, 2022), particu-
larly the use of acoustic emission (AE) sensors (Sun, Yang,
Li, & Xu, 2023; P. Xu, Zhou, Liu, & Mal, 2021; D. Xu, Liu,
Li, & Chen, 2019), as more efficient alternatives.
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AE sensors are distinguished by their ability to detect stress-
induced changes within materials, offering a sophisticated
means of identifying potential damages or loosening. Re-
search, such as that conducted by Wang et al. (Wang, Song,
Wang, & Li, 2013), demonstrates a correlation between AE
signal energy and the axial load of bolts, enabling precise de-
tection of bolt looseness through analysis of energy dissipa-
tion and signal amplitude. However, AE signals’ complex-
ity, marked by significant variations in amplitude and energy,
coupled with susceptibility to environmental noise and in-
terference, poses a significant challenge (Fu, Zhou, & Guo,
2023). Relying solely on a single AE characteristic often
falls short in accurately reflecting bolt tightness. Therefore,
there’s a pressing need to develop innovative methods capa-
ble of quantifying AE signals’ nonlinear characteristics and
accurately interpreting bolt looseness, underscoring the de-
mand for advanced analytical techniques.

The vast quantities of AE signals within data streams present
a significant challenge in identifying ground truth, rendering
supervised learning methods impractical for AE data interpre-
tation or anomaly detection (Ramasso, Denoeux, & Cheval-
lier, 2022; Ramasso, Placet, & Boubakar, 2015). This ne-
cessitates a pivot towards unsupervised learning techniques,
such as K-means, fuzzy C-means (FCM), and Gaussian Mix-
ture Models (GMM), to extract actionable insights from AE
data. Among these approaches, Gaussian Mixture Models se-
quentially (GMMSEQ), introduced by Emmanuel Ramasso
et al. (Ramasso, Denoeux, & Chevallier, 2022), stands out by
incorporating temporal dynamics into the clustering of un-
labeled AE data, thereby significantly enhancing parameter
estimation related to damage progression.

Recent advancements highlight the growing significance of
unsupervised and self-supervised learning methods, with a
notable focus on contrastive metric learning. This approach
harnesses the inherent similarities and contrasts within data
to facilitate learning without the necessity for explicit labels,
marking a pivotal shift toward more efficient representation
learning (Saunshi, Plevrakis, Arora, Khodak, & Khandeparkar,
2019). By comparing input samples and manipulating their
representations within the embedding space—drawing simi-
lar samples closer and distancing dissimilar ones—contrastive
representation learning streamlines the learning process. It
sidesteps the conventional need for labeling each sample, in-
stead utilizing a pre-established similarity distribution to clas-
sify inputs into positive or negative pairs (Hassani & Khasah-
madi, 2020).

Building on these insights, we propose a novel method that
leverages the power of a Multi-Layer Perceptron (MLP) en-
hanced with a contrastive metric learning loss (MLP-CMLL),
to adeptly handle AE data streams, particularly those exhibit-

ing sequentially appearing clusters. The proposed MLP-CMLL

approach, rooted in the principles of contrastive metric learn-

ing, aims to differentiate between similar and dissimilar fea-
tures within the AE data, generating robust feature embed-
dings without the need for explicit labels. These embeddings
serve as a powerful foundation for clustering, enabling our
system to dynamically identify and group sequentially ap-
pearing clusters of AE data. By applying time series k-means
clustering algorithm (TSKMean) (Huang et al., 2016), we
can effectively cluster AE events based on both their feature
similarities and their temporal characteristics. This integra-
tion enables the detection of sequentially appearing clusters,
a common occurrence in AE data streams, thereby providing
deeper insights into the material’s behavior and the efficacy
of the monitoring system.

The remainder of this paper is organized as follows: Section
2 introduces the proposed MLP-CMLL method, along with
their respective data preprocessing methods. Section 3 de-
scribes the dataset and provides an analysis of experimental
results. Finally, the main findings of this study are summa-
rized in Section 4 along with a description of future work
perspectives.

2. PROPOSED METHOD

In this section, we delineate the architecture of the proposed
framework, which aims to classify bolt tightening levels through
the analysis of acoustic emission data streams. Figure 1 illus-
trates the overarching architecture of our proposed approach,
specifically designed for clustering bolt tightening levels based
on acoustic emission data streams. Subsequently, we will
elaborate on the intricacies and functional components of the
proposed framework, detailing each block’s contribution to
the overall system.

2.1. AE signal Preprocessing & Feature Extraction

The preprocessing and feature extraction of AE signals is
a critical step in analyzing the raw data stream, performed
through a three steps, initially outlined in (Kharrat, Ramasso,
Placet, & Boubakar, 2016). The process begins with the data
stream undergoing an initial filtration stage, employing a fifth-
order high-pass filter with a cutoff frequency of 10 kHz and
a passband ripple of 0.2 dB, effectively eliminating the DC
component from the data.

* Step 1: Wavelet filtering Utilizing wavelet denoising
on 250,000 sample frames achieves an optimal balance
between computational efficiency and denoising quality.
The chosen Daubechies ”’dB45” wavelet, featuring 90
coefficients and 14 decomposition levels, effectively iden-
tifies AE signal onsets (Kharrat et al., 2016). This step
includes applying the soft Donoho-Johnstone universal
threshold to the wavelet coefficients and adjusting for
level-dependent noise, alongside correcting for any group
delay introduced by the filtering process. Figure 2 dis-
plays the raw signal and denoised signal.
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Figure 1. The general architecture of the proposed approach for bolt tightening level clustering.

e Step 2: Hit Detection Procedure aims to identify the some typical features. Additional features include the
start and end of each AE signal post-filtering based on Renyi number from the scalogram analysis using a Mor-
amplitude thresholds (1.2 mV in this case). This step en- let wavelet and the frequency at maximum energy, pro-
sures that only relevant AE events are selected for analy- viding a detailed signal characterization suitable for fur-
sis, utilizing specific counters ("HDT” 1100 ps and "HLT” ther analysis.
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Figure 3. AE signal and some typical characteristics.
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2.2. Embedding Features via MLP based on Contrastive
Figure 2. Raw signal and denoised signal. Metric Learning Loss (MLP-CMLL)

This subsection will describe the proposed MLP based on the
Step 3 Feature Extraction: Each detected AE signal Contrastive Metric Learning Loss (MLP-CMLL) method. In
is then analyzed to extract an extensive set of features, the following, we will mention the details of our algorithm for
encompassing time-based and frequency-based charac- learning a best loss metric based on an unsupervised metric
teristics (Kharrat et al., 2016; Sause, Gribov, Unwin, & learning with unlabeled data. The proposed contrastive met-
Horn, 2012; Gonzalez Andino et al., 2000) such as rise ric learning framework is based on the combination of two
time, counts, PAC-energy, amplitude, frequency metrics, methods, unsupervised EASE metric learning (Zhu & Ko-
signal strength, and energy distributions across specified niusz, 2022a) and Generalized Laplacian Eigenmaps (Zhu &
frequency intervals. Figure 3 shows an AE signal and Koniusz, 2022b).
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Let X € R™™™ be an unlabeled AE data of n samples and
m features. We propose a new MLP based on Contrastive
Metric Learning Loss (MLP-CMLL) framework for unsuper-
vised network embedding. To compute the loss function of
the MLP framework, we calculate the logdet of scatter matri-
ces based on the similarity and the dissimilarity (adjacency):

©* = arg min Rank (S, (X)) — Rank (Sgis (X)) (1)
e

Eq. (1) aims to compute a metric loss @ for each epoch that
maximizes the similarity between similar features and mini-
mizes the dissimilarity between dissimilar features.

Let:

Suis = fo(X)"Laisfo(X) and Sy = fo(X) 'Lym fo(X)

Then the LogDet relaxation becomes:
©®* = arg min log det (I +afe (X)TLsimf@(X))
[}
—logdet (I+ afe(X)  Lasfo(X))
= arg min log det(I + aSgn) — log det(I + aSgis)
[}
2

where I ensures I+ fg(X) "Lfe(X) > 0as fo(X) ' Lfe(X)

may be S7" leading to det (fo (X)L fe (X)) = 0. Thus, we
use log det(I + aS) as a smooth surrogate for Rank(S).

Lsim =I - A € Siv

e )
Lgs =I — Ay € S+.

Let us also define normalized graph Laplacian matrices in
Eq. (2) asin Eq. (3). Let D-Y/2AD /2 = Aand D =
diag (dy,--- ,dy,), where d; = Zj A;;. We explain how we
obtain A;,, and A4 later in the text. From equations Eq.
(3) and Eq. (2) we have:

Lqim_Li. - I_Aim - I_Ais
s dis (~ s~ ) ( d ) (4)
:Adis - Asima
As Lgm — Lgis = Agis — Agm , we obtain:
®* = arg minlog det (I +afe(X)" Agfo (X))
[}
(%)

— log det (I + afo(X) T Agm f@(X)> )

where A, and Ay are two different measurements with
the opposite effect. Thus, we introduce parameter o > 0 to
balance the impact of these both terms.

Dissimilarity Matrix. Although one might design a linear
projection based on the similarity relationship alone, we use
both the dissimilarity information and the similarity matrix
for learning a metric loss. Intuitively, in the context of a
K-clustering task with n unlabeled samples and M; queries
for each cluster, we are addressing a problem where (n =
K x M;) samples are to be clustered into K groups. Here,

off-diagonal entries are understood to signify distinct entities,
whereas on-diagonal entries indicate identical entities. Thus,
we form a dissimilarity matrix as the adjacency matrix of a
densely connected graph:

1
Ay, = —ee' —1, (6)
n

where e is an (n)-dimensional all-ones vector and I is the
identity matrix.

Similarity Matrix. To measure the similarity between the
pairs of samples, one has to choose a distance (or similarity
measure) that will perform well in the clustering setting.

The typical choice for the measure of similarity is the RBF
function Z;; = exp (— o (x:) — fo ()12 /a) Lo > 0but
the RBF function alone does not capture the structure of data.
In this work, we claim that for the K-cluster learning task, the
expected similarity matrix should be a K-block diagonal ma-
trix. However, the similarity matrix based on the RBF kernel
has no blockdiagonal structure.

Low-Rank Representation (LRR) (Liu, Lin, & Yu, 2010) ex-
presses each data point x; as a linear combination of other
points, x; = >, Z;;X;, and uses the representational co-
efficient (|Z;;| + |Z;i|) /2 to measure the similarity between
x; and x;. LRR takes the correlation structure of data into ac-
count, and finds a low-rank representation instead of a sparse
representation. In this work, the LRR is applied in the fol-
lowing rank minimization problem:

argzmin||f9(X)_f9(X)zH§ st. rank(Z) = K. (7)

Eq. (7) is solved in two stages: 1) Z = VTV, where V
is obtained from the skinny SVD of f3(X) = UXV ', and
2) for each row of V, one only keeps top-K absolute largest
entries of 3. Given the feature matrix fy(X), we obtain the
representation matrix Z by solving Eq. (7). The similarity
matrix is defined as Wy, = |Z| — diag(|Z]).

We provide our implementation in Alg. 1. The proposed
algorithm targets unsupervised network embedding by em-
ploying contrastive metric learning loss to enhance similarity
among similar features while reducing dissimilarity among
different ones. Central to this framework are the LogDet re-
laxation and Low-Rank Representation (LRR), both aimed at
achieving an embedding that accurately captures the inherent
structure of unlabeled data. This structured approach outlines
a comprehensive step-by-step methodology for implementing
the MLP-CMLL method, specifically designed to optimize
metric learning loss in scenarios involving unlabeled datasets.

2.3. Time Series K-Means for clustering

Following the generation of high-dimensional embedded fea-
tures via MLP-CMLL, with each feature vector comprising
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Algorithm 1 MLP based on Contrastive Metric Learning
Loss (MLP-CMLL)

1: Input: X € R"*"™: Unlabeled AE data of n samples and
m features.
2: Initialize: Predefined MLP architecture, v > 0.

»

Compute Similarity and Dissimilarity Matrices based
on Laplacian Matrices:

Sais = fo (X)Tj%disf@ (X)
Ssim = f@(X)TAsimfG)(X)
Optimization:

while not converged do
Solve for ®* minimizing:

SOV WU

©* = arg min log det (I +afe(X) Agsfo (X))
)

—log det (I + afe (X)TAsimf@ (X))
= arg min log det(I + aSgn) — log det(I + aSqs)
[}

11: Update MLP parameters.

12:

13: Adjust Matrices (Sgm and Sgis) Based on MLP-
embedded features.

14: end while

15:

16: Output: MLP-embedded features F (transform X into
feature-embedded space using best fg(.)).

1024 dimensions, the next crucial step involves dimensional-
ity reduction and the application of time series k-means for
effective clustering. Singular Value Decomposition (SVD)
(Wall, Rechtsteiner, & Rocha, 2003; Furnas et al., 2017) is
employed to reduce the dimensionality of these embeddings,
enhancing computational efficiency and preserves the essen-
tial characteristics of the embedded features.

Upon completing the dimensionality reduction, we employ a
sliding window technique to integrate the time series k-means
algorithm, a pivotal step for clustering AE data streams that
exhibit temporal dependencies. This method involves seg-
menting the reduced feature set into overlapping windows, al-
lowing for the dynamic nature of AE data to be captured over
time. The sliding window approach (SW) organizes the data
into sequences of a specified window size. We empirically
choose the SW size as 50, with a step size (1) dictating the
overlap between consecutive windows. This structuring is es-
sential for maintaining the temporal continuity of AE events,
facilitating the identification of clusters that evolve over time.

By applying time series k-means (Huang et al., 2016) to these
windowed sequences, we can effectively cluster AE events
based on both their feature similarities and their temporal
characteristics. This integration enables the detection of se-
quentially appearing clusters, a common occurrence in AE
data streams, thereby providing deeper insights into the ma-

terial’s behavior and the efficacy of the monitoring system.

3. EXPERIMENTATION AND RESULTS
3.1. Acoustic emission dataset Description

The ORION-AE dataset (Ramasso, Verdin, & Chevallier, 2022)
was obtained through a test rig known as ORION. The ORION
is specifically designed to mimic the loosening phenomena
commonly observed in bolted joints of structures in various
industries, including aeronautics, automotive, and civil engi-
neering. It is composed of two metallic plates linked together
by three M4 bolts (as shown in Figure 4, enabling the simu-
lation of bolt loosening under vibrational stress.

200mm

Figure 4. Setup description: part dimensions, sensors posi-
tions, bolts positions

The ORION-AE data are dynamically loaded with a vibra-
tion shaker and monitored with a laser vibrometer for veloc-
ity measurements and three AE sensors (micro80, FSOA, mi-
cro200HF). The sensors sampled data at a rate of 5 MHz, pro-
ducing datasets ranging from approximately 1.4 to 1.9 GB.

The ORION-AE dataset was generated by manually loosen-
ing a bolt on a test assembly and then subjecting it to 120
Hz harmonic vibrations, to simulate operational conditions.
The experiment explored seven levels of bolt tightness (T1:
5¢Nm, T2: 10cNm, T3: 20cNm, T4: 30cNm, T5: 40cNm,
T6: 50cNm, T7: 60cNm), with AE transients recorded for
10 seconds at each level. This procedure was repeated five
times, resulting in five campaigns/datasets (B, C, D, E, and
F), each with seven classes with 70 s of data for different sen-
sors. Each campaign recorded varying numbers of signals,
totaling 10,866; 9,461; 9,285; 15,628; and 17,810 signals, re-
spectively. Note that, for campaign C, the level of bolt tight-
ness 20 cNm is missing.

The seven tightening levels can be used as a ground truth
when designing learning methods. This makes this dataset
useful for developing and testing clustering and classification
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methods for interpreting acoustic emission data.

For the purposes of this paper, analysis was focused exclu-
sively on the micro-200-HF sensor, and only campaigns B, C
and E were utilized to measure the performance of the cluster-
ing method. Figure 5 displays the tightening levels, acoustic
emission and laser vibrometer data superimposed for mea-
surements B’ and sensor micro-200-HF (variable C).
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Figure 5. Tightening levels, acoustic emission and laser vi-
brometer data superimposed for measurements ”B”” and sen-
sor micro-200-HF (variable C).

3.2. Evaluation metrics

To properly evaluate the performance of clustering algorithms,
such as TimeSeriesKMeans, on our test dataset, we use a va-
riety of metrics. These metrics, as suggested by literature
(Maulik & Bandyopadhyay, 2002), include:

e Silhouette Score evaluates cohesion within clusters and
separation between them.

* Davies-Bouldin Index measures the average similarity
between each cluster and its most similar cluster.

* Adjusted Rand Index, Normalized Mutual Informa-

tion (NMI), Homogeneity, Completeness, and V-Measure

compare the clustering results to a ground truth, provid-
ing a measure of how well the clustering matches actual
categories in the data.

3.3. Performance analysis

To demonstrate the effectiveness of the proposed unsuper-
vised MLP-CMLL, we conduct numerous experiments to show
the effectiveness of our embedded features compared to three
different features, including raw data (AE signal Preprocess-
ing & Feature Extraction), PCA (Kherif & Latypova, 2020)
and SVD (Wall et al., 2003; Furnas et al., 2017). Tables 1,
2, and 3 show performance metrics for Campaigns B, C and
E using different features over the TSKMeans cluster with
sliding window.

Table 1. Performance metrics for Campaign B using different
features over TSKMeans cluster with sliding window.

Method ARI Silhouette DBI ~ NMI  Completeness
RAW 0.818 0.296 1.394 0.842 0.844
SVD 0.818 0.296 1.394 0.842 0.844
PCA 0.818 0.296 1.394 0.842 0.844
MLP-CMLL | 0.875 0.335 1.278 0.884 0.884

Table 2. Performance metrics for Campaign C using different
features over TSKMeans cluster with sliding window.

Method ARI  Silhouette DBI ~ NMI  Completeness
RAW 0.700  0.317 1.244 0.784 0.786
SVD 0.700 0.317 1.244 0.784 0.786
PCA 0.700  0.320 1.230 0.784 0.786
MLP-CMLL | 0.949 0.418 1.079 0.929 0.929

Table 3. Performance metrics for Campaign E using different
features over TSKMeans cluster with sliding window.

Method ARI  Silhouette DBI ~ NMI  Completeness
RAW 0.738  0.228 1.743 0.800 0.805
SVD 0.738 0.228 1.743 0.800 0.805
PCA 0.738  0.228 1.743 0.800 0.805
MLP-CMLL | 0.854 0.300 1.700 0.866 0.867

In the three tables 1, 2, and 3, the consistent outperformance
of MLP-CMLL across all campaigns underscores the poten-
tial of sophisticated neural network-based feature extraction
methods in enhancing clustering performance. It suggests
that MLP-CMLL can adaptively learn and highlight the most
relevant features for clustering, outpacing traditional dimen-
sionality reduction techniques in capturing the essential struc-
tures of various datasets. Furthermore, the relatively close
performance of SVD, PCA, and RAW methods across the
campaigns might reflect their limitations in dealing with com-
plex data structures or their potential redundancy when the
raw data is already amenable to effective clustering. Analyz-
ing three campaigns using various feature extraction meth-
ods within a TSKMeans cluster with a sliding window ap-
proach reveals consistent trends across performance metrics.
The MLP-CMLL method consistently outperforms the other
methods (RAW, SVD, PCA) in all evaluated metrics — Ad-
justed Rand Index (ARI), Silhouette score, Davies-Bouldin
Index (DBI), Normalized Mutual Information (NMI), and Com-
pleteness—indicating superior clustering effectiveness. The
RAW, SVD, and PCA methods display nearly identical per-
formance across most metrics and campaigns, suggesting sim-
ilar capabilities in handling clustering tasks. MLP-CMLL’s
higher scores across all metrics highlight its ability to capture
more complex patterns and nonlinearities that linear meth-
ods might miss, resulting in better-defined and more accu-
rately clustered data groups. This underlines the importance
of method selection in data clustering to achieve optimal re-
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Table 4. Performance metrics of different clustering methods for Campaign B using MLP-CMLL embedded features with (w/)
and without (w/0) sliding window.

Method ARI  Silhouette DBI  NMI  Completeness
GMM (w/0) 0.676  0.406 1.007 0.810 0.809
Kmeans (w/0) 0.623  0.436 1.000 0.786 0.795
MLP-CMLL+TSKMeans (w/o) | 0.657 0.410 0.997 0.796 0.795
MLP-CMLL+TSKMeans (w/) | 0.875 0.335 1.278 0.884 0.884

Table 5. Performance metrics of different clustering methods for Campaign C using MLP-CMLL embedded features with (w/)
and without (w/0) sliding window.

Method ARI  Silhouette DBI = NMI  Completeness
GMM (w/0) 0.975 0.420 1.050 0.962 0.962
Kmeans (w/0) 0919 0.423 1.036 0.904 0.904
MLP-CMLL+TSKMeans (w/0) | 0.919 0.424 1.037 0.904 0.905
MLP-CMLL+TSKMeans (w/) | 0.949 0.418 1.079 0.929 0.929

sults based on specific campaign characteristics and objec- bilities.

tives. Therefore, these observations suggest that while tradi-
tional methods like SVD and PCA have their merits, espe-
cially in contexts where computational simplicity and inter-
pretability are key, advanced neural network-based approaches
like MLP-CMLL offer a promising avenue for tackling more
complex clustering challenges. Future work could explore
further optimizations of the MLP-CMLL architecture, com-
parisons with other advanced machine learning techniques,
and applications to a broader range of data types and cluster-
ing scenarios.

For Campaign B, MLP-CMLL shows the best performance
across almost all metrics, highlighting its ability to extract
meaningful embedded features that contribute to effective clus-
tering. This suggests that the MLP-CMLL approach, with its
presumably more nuanced understanding of the data struc-
ture, is particularly well-suited for the types of datasets rep-
resented in Campaign B. RAW, SVD, and PCA show similar
performance in terms of ARI, Silhouette score, and other met-
rics. This could indicate that for Campaign B’s dataset, the
simpler dimensionality reduction techniques (SVD and PCA)
do not provide significant advantages over using RAW data.
This might be due to the nature of the data where the intrinsic
data structure is either too complex for simple linear transfor-
mations to capture or perhaps is already in a form where raw
data clustering is relatively effective.

For Campaign C, MLP-CMLL again outperforms other meth-
ods significantly in ARI and Completeness, reinforcing the
value of advanced feature extraction methods in improving
clustering outcomes. The improvement in the Silhouette score
and DBI suggests that MLP-CMLL leads to more distinct,
well-separated clusters than other methods. The performance
gap between MLP-CMLL and other methods (SVD, PCA,
and RAW) is notable, especially in terms of ARI and Com-
pleteness. This could imply that the Campaign C dataset con-
tains complex patterns or high-dimensional structures that are
better captured by the MLP-CMLL’s feature extraction capa-

For Campaign E, MLP-CMLL'’s superiority is evident but less
pronounced compared to Campaign C. It still leads in Ad-
justed Rand Index and Completeness, indicating its consistent
effectiveness across different datasets. The similarity in per-
formance between SVD, PCA, and RAW methods suggests
that for Campaign E’s data, the simple dimensionality reduc-
tion does not significantly impact the clustering performance,
similar to Campaign B. However, the overall lower scores
compared to Campaign B could indicate that Campaign E’s
dataset is inherently more challenging to cluster effectively,
possibly due to noise, less distinct groupings, or more com-
plex data structures.

Tables 4, 5, and 6 show performance metrics using different
clustering methods for Campaigns B, C, and E with (w/) and
without (w/0) sliding window.

Table 4 shows the performance metrics for Campaign B. The
performance metrics for Campaign B provide a nuanced view

of algorithm effectiveness. The Gaussian Mixture Model (GMM)

showcases strong performance with an ARI of 0.676, sug-
gesting a high degree of accuracy in clustering with respect
to the true classifications. This is supported by an NMI of
0.810 and a Completeness score of 0.809, indicating a robust
alignment between cluster assignments and actual data labels.
The introduction of a sliding window with Time Series K-
Means enhances its performance significantly, as evidenced
by a jump in ARI to 0.875 and NMI to 0.884, underscoring
the method’s ability to capture temporal dependencies within
the data. The Silhouette Score and DBI provide additional in-
sights; despite a lower Silhouette Score (0.335) with the slid-
ing window, indicating less clear separation between clusters,
the method’s overall effectiveness is not notably diminished,
suggesting that the sliding window compensates by capturing
temporal patterns not evident in spatial metrics alone.

Table 5 shows the performance metrics for Campaign C. Cam-
paign C’s analysis reveals the exceptional capability of the
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Table 6. Performance metrics of different clustering methods for Campaign E using MLP-CMLL embedded features with (w/)
and without (w/0) sliding window.

Method ARI  Silhouette DBI  NMI  Completeness
GMM (w/0) 0.626 0.311 1453 0.716 0.718
Kmeans (w/0) 0.546 0.336 1.284 0.642 0.644
MLP-CMLL+TSKMeans (w/0) | 0.598 0.341 1.371 0.671 0.673
MLP-CMLL+TSKMeans (w/) | 0.854 0.300 1.700 0.866 0.867

GMM algorithm, achieving near-perfect ARI (0.975) and NMI
(0.962) scores, which imply an almost flawless clustering out-
come compared to true labels. This campaign highlights the
impact of using a sliding window with Time Series K-Means,
which achieves an ARI of 0.949 and an NMI of 0.929. These
results suggest that the temporal structure captured by the
sliding window significantly enhances clustering fidelity. The
Silhouette Score (0.418 with the sliding window) and DBI
(1.079 with the sliding window) indicate a balance between
cluster cohesion and separation, affirming the effectiveness of
incorporating temporal context in clustering analysis.

Table 6 shows the performance metrics for Campaign E. In
Campaign E, the stark contrast in performance metrics be-
tween methods with and without sliding windows becomes
even more pronounced. The use of the sliding window with
Time Series K-Means propels its ARI to 0.854 and NMI to
0.866, suggesting a high degree of clustering accuracy that
leverages temporal information effectively. Despite a lower
Silhouette Score (0.300) with the sliding window, indicating
potential overlap among clusters, the high NMI and Com-
pleteness scores (0.866 and 0.867, respectively) with the slid-
ing window imply a successful capture of the intrinsic data
structure. This campaign showcases the critical role of tem-
poral analysis in clustering, especially for data where tempo-
ral patterns significantly influence the underlying structure.

Across campaigns B, C, and E, the analysis underscores the
nuanced performance of GMM and Time Series K-Means,
particularly when enhanced with a sliding window technique,
across various clustering quality metrics. While simpler al-
gorithms like Kmeans show competitive performance in spe-
cific metrics such as the Silhouette Score, the added complex-
ity and temporal awareness of the sliding window modifica-
tion in Time Series K-Means generally translate into superior
clustering outcomes, especially in terms of aligning with true
cluster structures and maintaining class completeness.

Advantages of MLP-CMLL Time Series K-Means (MLP-
CMLL with TSKMeans)

From all tables 4, 5 and 6, the introduction of Contrastive
Metric Learning Loss-Enhanced Multi-Layer Perceptron with
Time Series K-Means (MLP-CMLL with TSKMeans) marks
a significant advancement in clustering complex time-series
data. This novel approach leverages the strength of contrastive
learning to fine-tune the feature representation, significantly
enhancing the clustering capability of TSKMeans by ensur-

ing that similar instances are brought closer while dissimi-
lar ones are distanced in the feature space. Our results un-
derscore the efficacy of this method, particularly in achiev-
ing superior clustering performance metrics across all cam-
paigns when compared to traditional approaches. Notably,
the MLP-CMLL with TSKMeans exhibits remarkable im-
provements in metrics such as ARI and NMI, indicating not
only an enhanced alignment with the true cluster structures
but also a comprehensive capture of the intrinsic data relation-
ships. This methodological enhancement introduces a power-
ful tool for time-series analysis, offering robustness against
the challenges posed by the dynamic nature of temporal data
and paving the way for more accurate, interpretable clustering
solutions.

Our MLP-CMLL with TSKMeans vs. GMMSEQ (Ramasso,
Denoeux, & Chevallier, 2022). In a comparative analysis
between the novel MLP-CMLL+TSKmeans method and the
GMMSEQ (Ramasso, Denoeux, & Chevallier, 2022) method
across three experimental campaigns labeled B, C, and E, the
performance is quantitatively measured using the Adjusted
Rand Index (ARI). The ARI scores indicate the similarity be-
tween the clustering results and the true classifications, with
arange from -1 to 1, where 1 denotes perfect agreement. For
Campaign B, the MLP-CMLL+TSKmeans method signifi-
cantly outperforms GMMSEQ, achieving an ARI of 0.875
compared to GMMSEQ’s 0.772. This suggests a superior
ability of the MLP-CMLL+TSKmeans to accurately match
the true cluster structures. In Campaign C, both methods ex-
hibit exceptional performance with MLP-CMLL+TSKmeans
slightly leading (0.949 vs. 0.947), indicating that both are
very capable but MLP-CMLL+TSKmeans shows a slight edge
in capturing the clustering structure accurately. Campaign
E again sees MLP-CMLL+TSKmeans outperforming GMM-
SEQ (0.854 vs. 0.799), reinforcing the method’s robustness
and accuracy in analyzing the complex dynamics of acous-
tic emission data streams. Overall, MLP-CMLL+TSKmeans
consistently surpasses GMMSEQ in clustering performance
across all campaigns, evidencing its effectiveness and the sig-
nificant benefits it offers for structural health monitoring ap-
plications through better differentiation and handling of tem-
poral dynamics within AE data.

4. CONCLUSION

This work introduced a new method for the analysis of acous-
tic emission (AE) data streams, which are inherently sequen-
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tial and temporal. The study proposes a unique approach
by enhancing a Multi-Layer Perceptron (MLP) with a con-
trastive metric learning loss function (MLP-CMLL) and time
series kmeans, aiming to efficiently identify and analyze se-
quentially appearing clusters within the data. This novel loss
function is meticulously designed to optimize the MLP by im-
proving the differentiation between distinct clusters. The ap-
proach primarily concentrates on embedding sequences in a
manner that clusters with similar acoustic patterns are brought
closer together, while those with divergent patterns are dis-
tanced, thereby augmenting the MLP’s capability to recog-
nize and classify acoustic events based on their emission sig-
natures over time.

The importance of this work lies in its ability to address the
challenges associated with the precise characterization of dy-
namically forming clusters within AE data streams. Tradi-
tional clustering algorithms often falter in handling the tem-
poral dynamics of AE data, where the sequencing and tim-
ing of events are crucial for a comprehensive understanding
of the phenomena being monitored. By integrating a con-
trastive metric learning loss with an MLP architecture tailored
to the specifics of sequentially appearing clusters in AE data
streams, our method aims to unveil deeper insights into the
formation and evolution of clusters. This approach promises
to enhance monitoring and predictive maintenance in engi-
neering applications by capturing the complex dynamics of
AE data more effectively.

Through extensive experimentation and comparative analysis
against conventional techniques, we validate the superiority
of our proposed method in discerning the intricate dynamics
of AE data. This work presents a robust analytical tool for
the investigation of sequential clusters and their implications
in the domain of structural health monitoring, offering signif-
icant advancements over existing methods in terms of cluster
detection, characterization, and temporal analysis.
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