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ABSTRACT 

The copious volumes of data collected incessantly from 
diverse systems present challenges in interpreting the data to 
predict system failures. The majority of large organizations 
employ highly trained experts who specialize in using 
advanced maintenance equipment and have specific 
certification in predictive maintenance (PdM). Prognostics 
and health management (PHM) connects research on 
deterioration models to strategies for PdM. Prognostics refer 
to the process of estimating the time until failure and the 
associated risk for one or more current and potential failure 
modes. Prognostics aim to provide guidance by alerting to 
imminent failures and predicting the remaining useful life 
(RUL). This eventually leads to improved availability, 
dependability, and safety, while also reducing maintenance 
costs. This research work diverges from existing established 
prognostic methodologies by emphasising the use of hybrid 
prognostics to predict the future performance of an aircraft 
system, especially the point in which the system will cease to 
operate as intended, often referred to as its time to failure. We 
have developed a new method that combines a physics-based 
model with the physics of failure (PoF) and a multiple-
layered hyper-tangent-infused data-driven approach. The 
results are useful. The authors retrieved datasets for analysis 
using a laboratory aircraft fuel system and simulation model. 
Consequently, the comparative results demonstrate that the 
proposed hybrid prognostic approach properly estimates the 
RUL and demonstrates strong application, availability, and 
precision. 

Keywords: health management; physics of failure; hybrid 
prognostics; aircraft fuel system; remaining useful life. 

1. INTRODUCTION 

The goal of prognostics is to accurately detect and report 
impending system failures—that is, to forecast the 
progression of failure. Prognostic methodologies used in 
prognostic and health management (PHM) achieve this 
objective through three distinct classifications: condition-
based, usage-based, and traditional. Traditional prognostic 
approaches can be further classified as model-based, data-
driven, or hybrid models (Gu & Pecht, 2008; Liao & Köttig, 
2014). 

Using failure physics (PoF), likelihood, and reliability 
models to come up with and use expressions is what model-
based prognostic methods do. These models utilise the 
relationships between materials, manufacturing processes, 
and the dependability, robustness, and strength of a 
subsystem. This is typically achieved through controlled, 
structured experiments and life evaluations. Although 
modelling offers the potential for high accuracy, its 
implementation and utilisation in complex operational 
systems are difficult. The models comprise acceleration 
factor-incorporated reliability testing models, probability 
models, distributions, and reliability theory principles. Figure 
1 shows the comparison between physics-based and 
traditional condition-based data (CBD) approaches to PHM. 

Data-driven prognostic approaches, such as statistical and 
machine learning methods, are easier to use than model-based 
approaches but may result in less precise and accurate 
prognostic projections (Galar et al., 2021). As shown in Fu et 
al. (2023), statistical approaches include both parametric and 
nonparametric models. They also include K-nearest 
neighbour (KNN), a nonparametric method for classifying or 
regressing an item based on its nearby data points. Linear 
discriminant analysis (LDA) sorts many objects into groups, 
hidden Markov modelling (HMM) deals with systems that 
have hidden states, and principal component analysis (PCA) 
changes variables in a straight line. Hybrid approaches 
combine model-based and data-driven methods to enhance 
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accuracy and gain a deeper understanding of the interactions 
between parameters and objects. The complexity of 
computational processing is one of the limitations. 

 

Figure 1. Diagram comparison of model-based and CBD-
signature approaches to PHM (Hofmeister et al., 2017). 

Figure 2 illustrates an alternative representation of a fault tree 
for aircraft fuel error-identified systems. Failure Mode and 
Effects Analysis (FMEA) and Failure Mode, Effects, and 
Criticality Analysis (FMECA) are used in this study to 
investigate a fuel-error defect and find the most likely failure 
mode. This could be air flow, pressure, temperature, or the 
fuel pump. 

 
Figure 2. Example of fuel error leading to the application of 

prognostic model (Douglas Goodman et al., 2019) 

In this instance, we conclude that a temperature inaccuracy is 
the probable factor responsible for the fuel error. The fault 
tree indicates that three failure modes, namely the power 

supply, resistive temperature detector (RTD), or an air-data 
unit, are likely to cause the temperature error. We use an 
appropriate analytical model to generate prognostic data in 
the event of an RTD failure.  

1.1. Hybrid prognostic mechanisms 

A hybrid technique combines physics-based and data-driven 
prognostics in two phases: offline and online. The initial 
phase involves creating the nominal and deterioration 
models, as well as establishing the faults and performance 
criteria required to predict the remaining useful life (RUL) of 
the system. The second phase entails using models and 
thresholds to identify fault initiation, assess the state of 
system health (SoH), and forecast future SoH and RUL. Data 
from experiments and synthetic datasets from simulations 
that replicate real-world settings often validate and optimise 
the models. We create and utilise sensors to gather data from 
operational systems, with the aim of monitoring and 
maintaining the systems' health. The hybrid model offers a 
higher level of precision compared to employing solely a 
physics-based or data-driven approach. A physics-based 
model generates particularly accurate prognostic information 
when adjusted to sensor data. One drawback is the increased 
complexity involved in adapting the model to sensor data. 

Hybrid models utilise a blend of multiple models to enhance 
accuracy. Many academics have overlooked hybrid 
modelling for fault diagnostics and maintenance decision-
making. Ahmadzadeh & Lundberg (2014) examined three 
advanced models for predicting RUL: knowledge-based 
models, data-driven models, physics-based models, and 
hybrid prognostic models. Jardine et al. (2006) conducted an 
examination of machinery diagnostics and prognostics, 
showcasing the application of statistical, artificial 
intelligence, and physics-based prognostic methods in 
condition-based maintenance (CBM) to improve the 
precision of equipment RUL estimation. A few studies have 
especially concentrated on hybrid prognostic approaches to 
capitalise on the benefits of several prognostic models. 

Hybrid prognostic methodologies have limitations because 
they rely on both model-based and data-driven methods. 
Inaccurate models, noisy data, or both may result in an 
incorrect RUL forecast. As a result, if not managed correctly, 
there is a significant likelihood of increased variance in 
mistakes. A hybrid strategy combines elements of physics-
based and data-driven methodologies to leverage their 
advantages while mitigating their limitations, but it still 
retains some disadvantages of both. Elattar et al. (2016) 
developed a flowchart to assist in choosing a prognostic 
method, as shown in Figure 3. 
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Figure 3. Workflow to select prognostic approaches (Elattar 
et al., 2016). 

A hybrid strategy can effectively integrate data-driven and 
physics-based methods to optimise their respective strengths 
when managed appropriately. A physics-based method can 
address data deficiencies, while a data-driven model can 
address gaps in understanding the system's mechanics. 
Performing this fusion before estimating the RUL is known 
as pre-estimation. Fusion is a process that combines the 
results of various methods to determine the final RUL after 
predicting it. Li et al. (2019); Nieto et al. (2016); and Orsagh 
et al. (2003) used a fusion strategy for aircraft engine bearings 
to show that this method gives more accurate and long-lasting 
results than just using data-driven or physics-based 
approaches alone. 

1.2. Prognostic application 

In the aircraft sector, there are several instances of prognostic 
applications that are now in the developmental stage. The 
current aim of prognostic society is to create a PHM system 
capable of detecting and isolating problems in both the 
primary and subsystems of the aircraft. Additionally, this 
system will offer prognostic information for specific 
components (Losik, 2012; McCollom & Brown, 2011; 
Vohnout et al., 2012). PHM, which is critical to improving 
safety and lowering maintenance costs, has a significant 
impact on the choice of aircraft. The proposed architecture 
incorporates an external PHM system that will employ data 
mining techniques. Figure 4 depicts the forecasting 
applications.  

There has been a notable surge in interest in prognostics due 
to their ability to improve the health management of intricate 
engineering systems. Prognostics are important because they 
allow us to predict future illness progression and treatment 
outcomes. Daily weather forecasting also employs this 
technology. Whether they are located on board or off board, 

prognostic software solutions have the potential to function 
in real-time or nearly real-time. 

 

 

Figure 4. Forecasting applications. 

Prognostics can be used offline, regardless of how long the 
monitored system has been in operation. Real-time 
prognostics uses the online data collected from the data 
collection system to accurately estimate the RUL and warn 
about an imminent breakdown. This allows the system to be 
reconfigured and the mission re-planned. The offline 
prognostics system utilises extensive system data from the 
whole fleet and applies intricate data analysis techniques that 
are not feasible to conduct in real-time on board due to 
resource and time constraints. An offline prognostic system 
in logistical support management can provide useful 
information for maintenance planning and decision-making. 

2. AIRCRAFT FUEL DELIVERY SYSTEM 

An aircraft fuel delivery system with three tanks usually 
consists of a central tank and two wing tanks. The central tank 
supplies fuel to the engine, and the wing tanks supply fuel to 
the central tank via pumping stations. Two centrifugal 
pumps, complete with check valves to prevent backflow, 
equip each station. Prime movers, operating at a constant 
angular velocity, power these pumps. Engineers designed the 
system with varying elevations between the tanks and the 
engine intake to facilitate fuel flow. This flow is regulated by 
two-way bidirectional valves that respond to the fuel levels 
in each tank. Figure 5 illustrates the design of the simulation 
model, which is based on the MathWorks library. 
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Figure 5. Aircraft fuel delivery simulation system. 

The process of simulating this system involves modulating 
the fluid dynamics associated with the fuel flow, the 
mechanical design of the pumps and valves, and the control 
systems responsible for overseeing fuel distribution. The 
operation will examine the effects of aircraft manoeuvres, 
specifically changes in bank angle, on the reduction in 
pressure across the fuel lines. Figure 6 depicts the structure 
of the central tank in the simulation model. 

 

Figure 6. Central tank structure. 

There is a storage tank in a thermal liquid network that 
maintains a constant pressure and allows for a variable 
number of inlets. The pressure at the liquid surface is 
considered to be equivalent to the pressurisation. It represents 
the hydrostatic pressure differential between the fuel surface 
and the inlets. When the liquid level drops below the inlet 
height, the port is exposed. It is connected to a partially filled 
pipe to simulate the ongoing decrease in liquid level within 
the pipe. In the simulation model, ports A, B, C, D, E, and F 
are thermal liquid conservation ports connected to the tank 
inlets. The thermal-conserving port H is associated with the 
liquid's temperature in the tank. The physical signals V, L, 
and T represent the liquid volume, liquid level, and liquid 
temperature, respectively. Bidirectional valves are also 

depicted within a thermal fuel network. The voltage input S 
determines the location of the spool. Positive spool 
displacement facilitates fuel flow by opening the connection 
between ports A and B. The disconnection is caused by 
reverse spool movement. We regard the aforementioned 
component as adiabatic. The system does not transfer thermal 
energy to its surroundings. Figure 7 illustrates the engine 
pump and its various subcomponents. 

 

Figure 7. Engine pump and its subcomponents. 

The simulation model also includes a centrifugal pump 
operating within the fuel supply system. We employ affinity 
laws to establish the relationship between the reference pump 
characteristics and the actual flow rate and pressure gain. We 
connect the thermal fuel conservation ports, identified as 
ports A and B, to the pump's input and outflow, respectively. 
The drive shaft and casing respectively connect to the 
mechanical rotational conserving ports, denoted as ports R 
and C. Mechanical orientation determines the shaft rotation 
for proper pump functioning, where the flow moves from port 
A to port B and the pressure increases. The pump's 
performance in the other direction is indeterminate and 
perhaps imprecise. Figure 8 shows the engine pump's various 
characteristics. 

 

Figure 8. Engine pump characteristics. 

It is also possible to get an ideal source of angular velocity 
from the system, which produces a velocity difference at its 
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ends that is proportional to the physical input signal. The 
source is considered ideal since it is thought to have sufficient 
power to sustain a defined velocity regardless of the torque 
applied to the system. The relative velocity is calculated by 
subtracting the absolute angular velocity of the terminal 

from the absolute angular velocity of the terminal 
, denoted as .  

3. HYBRID PROGNOSTIC MODELLING AND RESULTS 

3.1. Physical principles 

The simulation model suggests a generic simulation of an 
aircraft's fuel supply system rather than directly replicating a 
specific real-world aircraft's fuel system. The model 
encompasses common components of an aviation fuel 
system, including: 

 Multiple fuel tanks: commercial and military 
aircraft typically have wing tanks and a centre tank 
to evenly distribute weight and improve fuel 
economy. The model provides certain starting 
pressurisation and volume capacities for the tanks, 
essential for maintaining fuel flow under different 
flying conditions. 

 The specifications for centrifugal pumps and valves, 
such as bidirectional valves and check valves, 
demonstrate the intricate systems used to control 
fuel supply from the tanks to the engines. 

 It contains essential information regarding the fuel 
line's length, diameter, and resistance properties, 
crucial for accurately modelling fuel flow within the 
system. 

The simulation provides a valuable resource that can be 
customised or expanded to accurately replicate the fuel 
system of a particular aircraft. Factors such as tank sizes, 
pump capacity, and system layout may be able to be adjusted 
in accordance with the aircraft's technical requirements. 
Table 1 presents the initial circumstances and parameters of 
the model. 

The physics-based model often involves the monitoring of 
many parameters, including pressures, temperatures, fuel 
levels, flow rates, and valve functioning. These parameters 
are determined by the components involved, as well as their 
established failure modes. While conducting an analysis of a 
simulated aircraft fuel system, researchers strive to identify 
consistent patterns in: 

 Fuel consumption rates during comparable 
operating conditions. Substantial variances could 
indicate inefficiencies or deterioration, such as 
pressure or temperature fluctuations in tanks or fuel 
lines that differ from the usual values, signalling 
possible problems. 

 Valves and pumps have operational behaviour, 
including unforeseen operations or alterations in 
performance measurements. 

Table 1. The initial circumstances and parameters of the 
simulated aircraft fuel delivery model 

Components Parameters Specs 

Initial 
Conditions 

Temperature 333.15 K 

Pressure 0.1 MPa 

Fuel Tanks 
Pressurisation  0.1 MPa 

Minimum fuel volume 
0.09463525 
m³ 

Wing Tanks 
Initial volume 10 m3 

Maximum capacity 12 m3 

Centre Tank 

Pressurisation 0.1 MPa 

Initial volume 5 m3 

Maximum capacity 284 m3 

Pumps 

Reference density 920.027 kg/m³ 

Reference angular 
velocity 

120 rev/s 

Angular velocity 
threshold 

10 rad/s 

Operational ranges for 
angular velocity 

0 to 200 rev/s 

Mover time constant 0.2 s 

Valves 

Maximum opening area 
π/4× 
(0.03048)2 m² 

Leakage area 1e – 10 m² 

Cutoff time constant 0.1 s 

Maximum valve opening 
(2-Way directional 
valves) 

5.1e-3 m 

Fuel line piping 

Length 5m 

Hydraulic diameter 3.05e-2 m 

Aggregate equivalent 
length for local 
resistances 

2.56 m 

 

To develop a physics-based model for an aviation fuel 
system, one needs to understand the basic concepts of fluid 
dynamics and the mechanical operations of these systems. 
Common mathematical formulas and concepts are 
summarised to reflect the physics of aviation fuel systems, 
establishing a solid foundation for developing a physics-
based model. 

The principle of mass conservation is applicable to the 
process of fuel transfer between tanks and its subsequent use 
by an airplane's engines. The generic equation provided can 
be used to analyse each tank: 

                         (1) 

Where:  
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  is the volume of fuel in the tank. 

  is time. 

  is the inflow of fuel into the tank, and  

  is the outflow rate of fuel from the tank to the 

engines or to other tanks. 

The application of Bernoulli's equation, which establishes a 
relationship between the pressure, velocity, and height head 
of the fluid, can aid in the analysis of fluid flow between 
tanks. This is especially beneficial when the tanks are located 
at varying heights or when calculating the necessary pressure 
for fuel transfer between them. 

                (2) 

Where: 

  is the pressure within the fluids. 

  is the density of the fluid (fuel). 

  is the velocity of the fluid. 

  is the acceleration due to gravity, and  

  is the height of the fluid column (which could 
represent the fuel level in the tank). 

PID (proportional-integral-derivative) control effectively 
manages pump speeds or valve positions to maintain 
predetermined fuel levels in individual tanks. Fuel level 
sensors provide the input for this control mechanism. The 
conventional arrangement of a PID controller is as follows: 

      (3) 

Where denotes the control signal (e.g., pump speed), 
 denotes the error signal (difference between desired 

and actual fuel level), and , , and  denote the 

proportional, integral, and derivative gains, respectively.  

In aircraft fuel systems, where turbulent flow is common, we 
can use the Darcy-Weisbach equation to calculate the 
pressure drops (∆𝑃) along a pipe length: 

∆𝑃 = 𝑓
𝐿

𝐷

𝜌𝜐2

2
                                     (4) 

The variables are defined as follows: 𝑓 is the friction factor, 
𝐿 is the length of the pipe, 𝐷 is the diameter of the pipe, 𝜌 is 
the density of the fuel, and 𝜐 is the velocity of the fuel.  

3.2. Hybrid prognostic integration methodology 

According to Chao et al. (2021), provided 

are multivariate time-series 
data from condition monitoring sensors and their 

accompanying RUL  for a fleet of N 

units . Each observation  

consists of a vector of ρ raw measurements taken at operating 

conditions 𝜔𝑖
(𝑡)
∈ 𝑅𝑠. The length of the sensory signal for the 

𝑖th unit is determined by , and may vary between units.  

The overall cumulative length of the available data collection 

is . We designate the provided dataset more 

compactly as . The objective is to 

develop a predictive model 𝒢 that can accurately estimate the 

RUL  on a test dataset  consisting of 

𝑀  units, which  are multivariate 

time series of sensor measurements. The overall cumulative 

length of the test data set is . 

The subsequent subsections provide a comprehensive 
analysis of each of these phases. Eker et al. (2019) proposed 
the following input and output processes for physical-based 
approaches, as depicted in Figure 9.  

 
Figure 9. Input and output of the physics-based model. 

The flowchart depicted in Figure 10 illustrates the operational 
mechanism of a hybrid predictive strategy employed in 
aeroplane fuel distribution systems. This approach combines 
physics-based and data-driven models. The commencement 
of the process occurs subsequent to the identification of the 
components and modes of aircraft failure, the process 
commences. The aviation fuel system is analysed using 
physics-based techniques and domain expert knowledge to 
estimate the short-term RUL. We conduct the analysis using 
either a real-world or synthetic dataset. 
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Figure 10. Illustration of fusion mechanism of a hybrid 
prognostic methodology for an aircraft fuel system 

The prediction results will be assessed using several 
prognostic metrics, as demonstrated in the studies conducted 
by Chao et al. (2021) and Fu & Avdelidis (2023). The 
optimisation process will be carried out by comparing the 
accuracy results with the actual RUL. Once the desired 
outcome is attained, a hybrid prognostic technique will be 
included. As long as the engineering systems adhere to 
specific physical deterioration, the methodology flowchart 
can be used for other complicated systems.  

Random holdback is the chosen approach for validation. The 
neural network consists of two layers in total. In the initial 
layer, three radial Gaussian activations are employed, 
whereas the subsequent layer utilises two times Sigmoid 
TanH and a linear activation function, which bears a striking 
resemblance to the activations used in two-layer models. We 
set the learning rate at 0.1, allowing for robust fitting. A 
single round of a tour is subject to a penalty approach. The 
authors of this paper used a variety of neural networks with 
different activation functions, including Sigmoid TanH, 
identity linear, and radial Gaussian. There are variations in 
the outcomes observed among the different models. Various 
characteristics were obtained, and the highest-ranked 
attributes that have the most impact on achieving the best 

result were selected. Figure 11 depicts the simplified neural 
network that yields the best results. 

 

Figure 11. Simplified boosted neural network model 
NGaussian(3) NTanH(2)NLinear(1) 

In its fitting routine, the boosted neural network employs a 
validation mechanism. Validation methods include holdback, 
K-fold, or the use of a validation column that performs the 
following actions to fit the model: 

 The model parameters are subject to a penalty. 

 The validation set adjusts the penalties applied to the 
parameters. 

The actual-by-predicted plot calculates the comparison 
between the training's actual and expected values. The 
suggested methodology reveals the correlation between the 
observed value and the projected value on the training 
dataset. The ideal situation involves aligning all data points 
along a straight path where the anticipated values accurately 
match the observed values. The data points in this graph 
display a mostly linear trend that is primarily located close to 
the actual RUL value. This observation suggests that the 
projected values exhibit a degree of resemblance to the 
observed values. As a result, the model exhibits higher levels 
of predicted accuracy for positive values in comparison to 
negative values. Table 2 presents the results for both training 
and validation methods. 

Table 2 suggests multiple measuring and evaluation 
measures to compare prognostic outcomes. Fu et al. (2023) 
provide comprehensive explanations for each rating metric. 
Table 2 demonstrates that the R2 value is 0.9998 for both the 
training and validation stages, indicating a substantially 
identical outcome in both phases. The training procedure 
yielded a higher RASE value of 14.56 compared to the 
validation process value of 21.26, indicating that the 
prognostic algorithm exhibits superior performance during 
the training phase as opposed to the validation phase. We may 
attribute the tiny difference to the inadequate amount of 
training data, which led to less accurate predictions. Future 
optimisation and updates have significant potential to 
improve accuracy. MathWorks extracts the simulation data 
from the simulated fuel distribution systems, which you can 
view at https://zenodo.org/doi/10.5281/zenodo.10888497. 
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Table 2. Optimal variation in terms of evaluation 
performance. 

 Measures Value 

Training 

RSquare 0.9997863103 

RASE 14.563087252 

Mean Abs Dev 8.6751876436 

-LogLikelihood 2308.3148678 

SSE 127038.02268 

Sum Freq 599 

Validation 

RSquare 0.9997561214 

RASE 21.260680304 

Mean Abs Dev 9.1951405963 

-LogLikelihood 1173.5466987 

SSE 135604.9581 

Sum Freq 300 

 

4. CONCLUSION 

Prognostics are essential in PHM, comprising several 
elements like system monitoring, fault detection and 
diagnostics, failure prognostics, and operating management. 
Prognostic models in both industry and research commonly 
utilise physics-based and data-driven methodologies. Every 
strategy has unique benefits and drawbacks. The current work 
presents a hybrid prognostic model that efficiently 
incorporates the benefits of both approaches while reducing 
their limits whenever possible. 

Hybrid prognostics were modified in order to incorporate the 
short-term forecast from physics-based prognostics. This 
concept has been used in aviation fuel distribution systems. 
The present research compares the RUL estimations achieved 
by the hybrid method with those acquired through several 
physics-based and data-driven methodologies. In real-world 
scenarios with insufficient data on long-term failures, the 
hybrid strategy significantly outperforms any of its 
component techniques. 
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