
Graph Neural Networks for Electric and Hydraulic Data Fusion to
Enhance Short-term Forecasting of Pumped-storage

Hydroelectricity
Raffael Theiler1, Olga Fink2

1,2 EPFL, Lausanne, Vaud, 1015, Switzerland
raffael.theiler@epfl.ch

olga.fink@epfl.ch

ABSTRACT

Pumped-storage hydropower plants (PSH) actively partici-
pate in grid power-frequency control and therefore often op-
erate under dynamic conditions, which results in rapidly vary-
ing system states. Predicting these dynamically changing states
is essential for comprehending the underlying sensor and ma-
chine conditions. This understanding aids in detecting anoma-
lies and faults, ensuring the reliable operation of the con-
nected power grid, and in identifying faulty and miscalibrated
sensors. PSH are complex, highly interconnected systems en-
compassing electrical and hydraulic subsystems, each char-
acterized by their respective underlying networks that can
individually be represented as graph. To take advantage of
this relational inductive bias, graph neural networks (GNNs)
have been separately applied to state forecasting tasks in the
individual subsystems, but without considering their interde-
pendencies. In PSH, however, these subsystems depend on
the same control input, making their operations highly inter-
dependent and interconnected. Consequently, hydraulic and
electrical sensor data should be fused across PSH subsys-
tems to improve state forecasting accuracy. This approach
has not been explored in GNN literature yet because many
available PSH graphs are limited to their respective subsys-
tem boundaries, which makes the method unsuitable to be
applied directly. In this work, we introduce the application
of spectral-temporal graph neural networks, which leverage
self-attention mechanisms to concurrently capture and learn
meaningful subsystem interdependencies and the dynamic pat-
terns observed in electric and hydraulic sensors. Our method
effectively fuses data from the PSH’s subsystems by operat-
ing on a unified, system-wide graph, learned directly from
the data, This approach leads to demonstrably improved state
forecasting performance and enhanced generalizability.

Raffael Theiler et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In power grids, pumped-storage hydropower plants (PSH) are
well-established for large-scale energy storage due to their ef-
ficiency, scalablilty and flexibility. In this role, these plants
dynamically respond to potentially large fluctuations in grid
demand. In the transition towards smart grids, PSH sensor
data is collected via wide area measurement systems (WAMS)
(Pagnier & Chertkov, 2021a) and is stored in centralized en-
ergy management systems (EMS). By processing the aggre-
gated WAMS data, modern EMS provide crucial function-
alities for PSH operators such as load forecasting, real-time
monitoring, distribution and demand-side management, and
various decision support tools aimed at increasing efficiency
and sustainability. To enhance system reliability, EMS imple-
ment anomaly and sensor fault detection based on short-term
forecasting and state estimation, playing a pivotal role in pre-
venting failures that could lead to widespread power grid out-
ages and significant economic losses. However, the dynamic
operation of the PSH and the vast amounts of data transmit-
ted by the WAMS significantly complicate the task. In the
PSH environment, conventional state estimation is often in-
effective because the computation can take several minutes
(Li, Pandey, Hooi, Faloutsos, & Pileggi, 2022). This delay
leads to a rapid divergence between the most recent and the
previously used system state for the estimation, resulting in
numerous false-positives when applied to anomaly detection.
Consequently, it becomes challenging to maintain a compre-
hensive overview of the system’s health and performance. As
a solution, deep-learning-based short-term state forecasting
has recently been applied, which offers significantly faster
processing times and holds the potential to benefit from the
additional data increasingly collected at a high sampling rate
(Kundacina, Cosovic, & Vukobratovic, 2022).

Developing deep-learning-based state forecasting for PSH is
particularly challenging. These challenges stem from the ne-
cessity to accurately represent two distinct physical domains
within the PSH: the hydraulic and electrical systems. Al-
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though these domains are mechanically interconnected by elec-
tromagnetic generators, they are traditionally modeled inde-
pendently in mechanical engineering. This division mainly
stems from the distinct dynamics governing each subsystem.
It is, therefore, challenging to model hydraulic and electrical
domains simultaneously. Nonetheless, considering the direct
causal relationship between the systems – wherein kinetic en-
ergy is transformed to electric energy – we hypothesize that
fusing data from both subsystems, which operate under a uni-
fied control input, can significantly enhance state forecasting.

To address the challenge of fusing electric and hydraulic data,
we posit that both subsystems of the PSH consist of extensive
networks, which are coarsely monitored with sensors that can
be represented in the non-Euclidean graph domain. By oper-
ating on this more effective graph representation, which can
capture biases given by the PSH system architecture and ho-
mophily biases, addressing the phenomenon that sensor mea-
surements tend to be connected with “similar” or “alike” oth-
ers (Ma, Liu, Shah, & Tang, 2023), graph neural networks
(GNNs) have recently gained significant attention. When a
graph is available, GNNs have been effectively applied in key
applications to (hydro) power plants (Liao, Bak-Jensen, Rad-
hakrishna Pillai, Wang, & Wang, 2022) and in the broader
power grid environment. However, these methods depend on
the availability of apriori graphs, derived from PSH’s elec-
trical and hydraulic network diagrams. Therefore, their ap-
plicability is limited by the fact that, although the underly-
ing network structure of both electric and hydraulic subsys-
tems of a PSH can be modeled as a graph, network diagrams
for PSH exist typically only separately for each subsystem.
Consequently, most graph-based methods are confined within
the boundaries of their respective systems. To overcome this
limitation, we propose learning a PSH sensor graph from la-
tent dependencies in the data. While it has previously been
demonstrated that graph structures can be efficiently learned
from data, this approach remains unexplored in the context
of hydropower plants. In light of this, inspired by (Cao, Li,
Ma, & Tomizuka, 2021), we propose using spectral-temporal
graph neural networks (STGNN) to learn a latent correla-
tion graph structure across the entire PSH asset for the fusion
of electric and hydraulic data, leveraging the self-attention
mechanism.

Compared to numerical simulation, our data-driven GNN-
based methodology is computationally inexpensive and does
not require expert knowledge while maintaining interpretabil-
ity, due to the accessibility of the learned graph. Our pro-
posed approach can be easily transferred to different PSH as-
sets without any calibration. To the best of our knowledge,
there is no other work on data-driven electric and hydraulic
data fusion for PSH using graph neural networks.

To summarize, in this work, we introduce the application
of attention-based graph neural networks to effectively learn

intra- and interdependencies between the subsystems’ sensors
to enhance the short-term state forecast in the pumped storage
power plant (PSH) environment. We tackle several challenges
when applying state forecasting to PSH:

• In line with the dynamic operation of the PSH, the dy-
namic behavior of sensors adds complexity to the fore-
casting. We propose a spectral-temporal graph neural
network (STGNN) that effectively captures these patterns
by incorporating the PSH’ underlying structural and ho-
mophily biases, such as load patterns that are reflected
across sensor measurement sites.

• State forecasting in the PSH environment depends strongly
on environmental parameters, such as temperature, daily
load profiles, and power grid customer-related factors,
which cannot be modeled in numerical simulations (Lin,
Wu, & Boulet, 2021). In contrast, our STGNN is able to
learn these factors from data.

• The PSH is a spatially distributed complex system that
spans across the hydraulic and electric domains. We pro-
pose a graph learning module that learns a unified graph
representation across the hydraulic and electrical subsys-
tems from latent dependencies in the data.

• We assess the performance of our method on a multivari-
ate PSH dataset containing 58 signals, showcasing the
dynamic operation of the asset.

The reminder of this paper is organized as follows: Sec. 2
reviews relevant literature that focuses on graph-based deep
learning and data fusion. Sec. 3 introduces our STGNN ap-
proach. In Sec. 4, we discuss the case study conducted on
a Swiss PSH plant, including the experimental and training
setups. In Sec. 5, we present our results. Finally, Sec. 6 con-
cludes this work and outlines future steps.

2. BACKGROUND AND RELATED WORK

Conventional machine learning applied to power systems have
primarily focussed on linear regression models and recurrent
neural networks (Zheng, Xu, Zhang, & Li, 2017). These
methodologies continue to be effective and provide compet-
itive results, particularly in areas like short-term load fore-
casting (Guo, Che, Shahidehpour, & Wan, 2021) and daily
peak-energy demand forecasting (Kim, Jeong, & Kim, 2022).
Since their introduction, GNNs (Bronstein, Bruna, LeCun,
Szlam, & Vandergheynst, 2017) have been applied to many
tasks in power systems. By now, graph-based deep learning
has become a well-established method for analyzing power
system data, thanks to its ability to include structural and ho-
mophily biases that cannot be modeled conventionally. Mes-
sage-passing GNNs have been successfully applied to state
estimation (Kundacina et al., 2022), and power flow estima-
tions (Ringsquandl et al., 2021). The same tasks have also
been addressed using graph convolutional neural networks
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(GCN) (Fatah, Claessens, & Schoukens, 2021). In the broader
power-grid environment, GNNs are also used for wind speed
forecasting in renewable energy (Liao, Yang, Wang, & Ren,
2021). Additionally, GNN-based state forecasting was used
in a range of downstream tasks in several previous research
studies, including graph-based early fault detection for IIoT
systems (Zhao & Fink, 2024), anomaly detection in the elec-
trical grid (Li et al., 2022), fault diagnosis for three-phase
flow facility (Chen, Liu, Hu, & Ding, 2021), predicting dy-
namical grid stability (Nauck et al., 2022), and physics-informed
parameter and state estimations (Pagnier & Chertkov, 2021b,
2021a).

Other works have used spatial-temporal extensions of GNNs
in the electrical domain for residential load-forecasting (Lin
et al., 2021), fault diagnostics in power distribution systems
(Nguyen, Vu, Nguyen, Panwar, & Hovsapian, 2022), and with
complex-value extensions (T. Wu, Scaglione, & Arnold, 2022)
for state forecasting. In another lie of research, (Wang et
al., 2022) propose spatial-temporal graph learning for power
flow analysis, where the graph is dynamically created from
thresholded normalized mutual information. At the compo-
nent feature level, attention-based graph learning (GAT) has
been applied to power flow analysis (Jeddi & Shafieezadeh,
2021) and in a different work for probabilistic power flow to
quantify uncertainties of distribution power systems (H. Wu,
Wang, Xu, & Jia, 2022). To the best of our knowledge, the ap-
proach of employing a self-attention mechanism at the graph
level to learn a graph structure that integrates electrical and
hydraulic data using graph neural networks has not yet been
addressed in previous research.

In the context of power systems, data fusion represents a cru-
cial technique for enhancing the accuracy and reliability of
forecasting algorithms by integrating diverse data sources.
In the electrical domain, the fusion of diverse electrical sys-
tem information was utilized to estimate the voltage in dis-
tribution networks (Y. Zhu, Gu, & Li, 2020), using cross-
correlations between individual transformers. Another re-
search study achieved state-of-the-art multi-site photovoltaic
(PV) power forecasting (Simeunović, Schubnel, Alet, & Car-
rillo, 2022), fusing spatially distributed PV data by exploit-
ing the intuition that PV systems provide a dense network
of virtual weather stations. Integrating weather station data
was also explored for anomaly detection for the industrial
internet of things (Y. Wu, Dai, & Tang, 2022). Given its
importance, modeling the interaction between the PSH sub-
systems has previously been explored using higher-order nu-
merical simulation (SIMSEN) (Simond, Allenbach, Nicolet,
& Avellan, 2006). However, operating numerical simulators
in practice requires precise calibration and, consequently, ex-
tensive documentation of the components, which is typically
not readily available. This calibration step is indispensable
due to the components exhibiting highly non-linear charac-
teristics (Nicolet et al., 2007). Given the significant varia-

tions in designs across different PSH assets, and the necessity
for expert knowledge (which is often unavailable), applying
this simulator-based methodology is often infeasible in real-
world applications. For PSH, these limitations shift the fo-
cus to data-driven interaction modelling with GNNs, which
is computationally affordable and does not necessitate expert
knowledge, yet remains unexplored.

3. METHODOLOGY

This section introduces the Spectral-Temporal Graph Neural
Network (STGNN) that we propose for the fusion of elec-
tric and hydraulic data in PSH state forecasting. In Section
3.1, we define the forecasting problem. From Section 3.3 on-
wards, we decompose the forecasting problem into learning
the underlying latent graph structure from time series data
(Sec. 3.4). Subsequently, on the learned graph, we intro-
duce graph-spectral and time-spectral filtering (Sec. 3.6). An
overview of the methodology is provided in Figure 1.

Notation: In this work, we use slicing notation denoted by the colon
(:) symbol. Given a matrix A ∈ Rm×n, where m and n represent
the number of rows and columns respectively, slicing is expressed
as A[i : j, k : l] or Ai:j,k:l. This notation represents the selection
of rows i through j − 1 and columns k through l − 1 of matrix A.
If i or k is omitted, it implies starting from the first row or column,
respectively. Similarly, if j or l is omitted, it implies selection until
the last row or column, respectively. We use ⊗ to denote element
wise multiplication and ⊕ for concatenation. The Frobenius norm is
denoted as ∥ • ∥F .

3.1. Problem Formulation

The specific objective of this work is to provide accurate state
forecasting for the electrical subsystem of the PSH. Our ap-
proach utilizes learnable graph-spectral and time-spectral fil-
tering to compute state predictions (the forecast). Let X̄ ∈
RT×H+E represent the smoothed time series data X̄ = S(X)
computed from unsmoothed time series X using the smooth-
ing function S for E sensors in the electric and H sensors in
the hydraulic subsystem, respectively, over a time period T .
We define our forecasting model as a functionM : Rw×H+E →
Rh×E for a specific point in time w < t < T , that op-
erates on input windows of the data of length w sliced as
X̄[t − w : t]. The goal is to forecast the subset of electri-
cal sensors X̄[t : t + h, : E] for a horizon of size h. Model
M operates on a graph G that is either inferred from the input
data by a parameterized function Gϕ(X̄[t − w : t]), which
is trained alongside M , or may be provided apriori. We in-
troduce two sets of learnable parameters: θ for the filtering
Mθ and ϕ for the graph learning Gϕ. Thus, state forecasting
and state reconstruction estimates denoted by •̃ at a selected
timepoint t, are computed by the model M as follows:

X̃t:t+h
elec , X̃t−w:t

elec =Mθ(X̄
t−w:t | Gϕ) (1)
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Figure 1. An overview of the two processing steps of our spectral-temporal graph neural network to fuse data from the electrical
and hydraulic subsystems of a PSH. Utilizing attention-based graph learning, our method dynamically constructs a graph based
on an input window X̄t−w:t. Subsequently, by operating on this graph, the graph- and time-spectral filtering module efficiently
extracts information from the hydraulic and electrical sensor data to forecast the subset of electrical sensors X̃t:t+h

elec .

3.2. Training Objective

By employing a sliding window approach, we construct a
training dataset X Train of length Ntrain, where Ntrain depends
on the training data split. We also construct analogous vali-
dation and test datasets XVal and X Test , respectively:

X Train = {X̄t:t+h
elec , X̄t−w:t

elec , X̄t−w:t}Ntrain
t=w

We optimize the parameters of the model by minimizing the
forecasting error Et

f = X̃t:t+h
elec −X̄t:t+h

elec . To learn meaningful
and compact representations, we introduce an optional recon-
struction error Et

r = X̃t−w:t
elec −X̄t−w:t

elec for regularization. The
final training objective is expressed as:

L(X̃, X̄) =

Ntrain∑

t=w

(
λf∥Et

f∥2F + λr∥Et
r∥2F
)

During the model’s training process, we identify the optimal
parameters:

θ∗, ϕ∗ = argmin
θ,ϕ
L(X̃, X̄;ϕ, θ) (2)

3.3. Node Features and Graph Representation

For the forecasting problem, we consider spatially distributed
sensor sites modeled as nodes (vertices) v ∈ V of a graph
that spans the pumped storage hydropower plant. Due to dif-
ferences in raw sensor sampling rates, we use resampled time
series based on simple moving averages, taking into account
the true sensor sampling rate of the j-th sensor Sj . This step
smooths the time series:

X̄[i, j] = S(X[i, j]) =
1

Sj

Sj∑

τ=1

sjτ (3)

We model each measurement site, containing one or more
sensors as an individual node. Each node is associated with a
feature vector xt−w:t

v ∈ Rw×d, ∀v ∈ V , containing a win-
dow w of the smoothed sensor data and additional d − 1 co-
variate dimensions such as a temporal encoding. This strategy

is uniformly applied to both the electrical and hydraulic com-
ponents within the pumped-storage power plant environment.
Nodes are exclusively assigned to one of the sets: 1el(v) = 1
for electrical components or 1hyd(v) = 1 for hydraulic com-
ponents, ensuring 1hyd(v) + 1el(v) = 1. As input for the
subsequent model M , we consider the joint graph:

Gϕ =
(
Vel ∪ Vhyd, Eϕ(X̄[t− w : t])

)

where the edges may be learned by a parameterized function
Eϕ.

3.4. Attention-based Graph Learning

We define a trainable function that implements self-attention
among the sensor nodes to infer the edgesEϕ(X) of the graph
G. To compute the self-attention, we first map the time series
to an embedding space E = GRU(X̄) using a gated recurrent
unit (GRU). We then proceed by computing the self-attention
of the embedded time series. For this purpose, we define a
query sequence Q and a key sequence K to compute the at-
tention scores W :

Q = EWQ,K = EWK ,W = Softmax
(
QKT

√
d

)
(4)

by linear projection with the trainable matrices ϕ = (WQ,WK).
Unlike in graph attention networks (GAT) (H. Wu et al., 2022),
which define attention over features of a pre-existing graph,
we directly compute the symmetrically normalized graph Lapla-
cian L from the attention scores W , which we convert into a
symmetrical adjacency matrix A = 1

2 (W +WT ). We com-
pute the Laplacian as L = I − D− 1

2AD− 1
2 , where L is the

Laplacian matrix, I is the identity matrix, D is the diagonal
degree matrix of A, the adjacency matrix. L is then used for
the graph spectral filtering in Section 3.6.
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3.5. Spectral-temporal Graph Neural Network

To predict the sensor dynamics, the model processes the input
data X̄t−w:t on the learned graph G (obtained as introduced
in Section 3.4) by mapping the input data from the spatial-
temporal vertex domain of the sensor signals to a spectral la-
tent representation. This mapping is achieved through the se-
quential application of graph-spectral and time-spectral trans-
formations, as introduced in Sec. 3.6. The corresponding
inverse transformations are utilized to reconstruct the sensor
signal in the spatial-temporal domain. To address the prob-
lem of vanishing gradients and performance degradation with
increasing network depth, we introduce skip connections to
compute the final forecast. We denote the output of the resid-
ual blocks as sk. Thus, modelM can be expressed with spec-
tral filtering (F ), and a bypass layer fb as follows in the re-
cursive equation:

(sfk , s
b
k) =

{
F
(
X̄) | Gϕ(X̄)

)
, sb0 = X̄ k = 0

F
(
σ(sbk−1 − fs(sbk−1)) | Gϕ(X̄)

)
, k > 0

(5)
where the final forecast is computed as X̃t:t+h

elec = Ωf

(∑k
i=1 s

f
i

)

with an application-specific feedforward head function (Ω),
and the backcast as X̃t−w:t

elec =
∑k

i=1 s
b
i .

3.6. Graph- and Time-spectral Filtering

For the spectral filtering module F , we use graph convolu-
tional filtering and the trainable Spe-Seq Cell Sθ introduced
in (Cao, Wang, et al., 2021). We denote the graph Fourier
transform as GF , and its inverse as IGF . The j-th channel
yj in the graph-spectral domain is therefore computed as fol-
lows:

yj = IGF
(∑

i

gθij (Λi)Sθ(GF(Xi))

)
. (6)

In the graph-spectral domain, we implement the parameter-
ized filtering gθ(Λi) on the eigenvalues Λ. Instead of com-
puting yj directly, we compute the Chebyshev polynomials
of L to efficiently approximate the graph Fourier transform
without performing the costly eigenvalue decomposition of
the Laplacian matrix L = UΛUT , where U is the graph’s
eigenvector matrix. We obtain the i-th Chebyshev polynomial
Ti(•) with the recurrence relation: T0(x) = 1, T1(x) =
x, Tk+1(x) = 2xTk(x) − Tk−1(x). Thus, we implement
graph-spectral filtering with the graph spectral operator g(L)
as follows:

g(L̃)Xj ≈
N∑

n=0

cnSθ(Tn(L̃)Xj) (7)

where cn are the learnable parameters and L̃ = 2L/λmax−IN
is the normalized Laplacian matrix. The Spe-Seq Cell en-
hances the output of GF , treating it as a multivariate time-

series in the graph-spectral domain. It then elevates this out-
put into the time-spectral domain to learn feature represen-
tations. To achieve this, the Spe-Seq Cell uses the Discrete
Fourier Transform (DFT) and gated linear units (GLU) for
element-wise modulation of the signal in time-spectral do-
main as follows:

GLU(x) = x⊗ σ(Wgx+ bg) (8)

This approach effectively implements convolution on the mul-
tivariate time-series in the graph-spectral domain.

4. CASE STUDY AND EXPERIMENTAL SETUP

The dataset in this case study was obtained in collaboration
with the Swiss Federal Railways (SBB). SBB maintains a
separate railway traction current network (RTN) that oper-
ates at a frequency of 16.66 Hz to power rolling stock across
Switzerland. The power plant operators of SBB use supervi-
sory control and data acquisition (SCADA) protocols to trans-
mit sensor data to a centralized energy management system
(EMS). This setup allows for real-time monitoring of assets,
ensuring timeliness and synchronicity between sensor sig-
nals, making it a technically sound environment to evaluate
the proposed methodology.

Objective: For this case study, our aim is to forecast the cur-
rents measured by the electrical sensor network of the PSH.
From an operator’s perspective, forecasting currents is par-
ticularly compelling when dealing with rolling stock, given
their highly dynamic current profile that is vastly different
to residential power grids. While the residential sub-grid of
Zurich, the largest City of Switzerland, is subject to transient
load changes within 15 minutes intervals of up to 35MW,
the RTN of SBB experiences load changes up to 250 MW
whithin the same time interval due to the orchestrated and pe-
riodic timetable of the Swiss railway network (Halder, 2018).
The importance of accurate current forecasts is additionally
heightened because electrical components in power systems,
like transformers and conductors, have thermal limitations
that depend on the amount of current flowing through them.
Unlike voltage levels, current levels in the PSH dynamically
react to transient loads changes. Anomalies such as sud-
den increases or decreases in power demand, or failures in
equipment, are therefore more immediately reflected in cur-
rent fluctuations. We therefore focus on phasor current fore-
casting in this study.

Dataset & Data Preparation: We collected data spanning
four months from a PSH in Switzerland, consisting of read-
ings from 58 sensors that monitor pressures, flow rates, and
lake levels of the hydraulic subsystem, as well as electri-
cal currents from seven generating units, including connected
substations in the electrical subsystem. The time series are
averaged to a 1-minute resolution and were collected from
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January to March in 2021. We maintained the temporal or-
dering of training (70% of the data), validation (15%) and test
(15%) datasets to ensure that the validation and test indices
are sequentially higher than the training indices. We normal-
ize the data using feature-wise min-max scaling. To provide
a comprehensive understanding of the dataset, we show a de-
tailed segment of the sensor data in Figure 2.

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Day i Day i + 7

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

03:00 06:00 09:00 12:00 15:00 18:00 21:00

N
or

m
al

iz
ed

 P
ha

so
r C

ur
re

nt
 fo

r S
en

so
r N

i

Time of the Day

Figure 2. Segment of the dataset, displaying all 21 normal-
ized phasor current sensors (the forecasting target of our case
study), indicating the dynamic nature of the sensor measure-
ments. We show the same day of the week (i and i + 7) for
two consecutive weeks.

Model & Training: The experiments were conducted on an
NVIDIA RTX3060 using PyTorch 2.0 and CUDA 11.8 for
the development and training of the models. The proposed
model utilizes a window size (w) of 24 and a horizon size of
1, meaning that it predicts the currents for the next minute.
This configuration is tailored to the synchronized operation
of the Swiss railway network, which organizes its periodic
timetable in half-hourly intervals. Our selected model’s input
window takes this operational profile into account, thereby
reducing the influence of the previous interval. During model

fine-tuning, we truncate the Chebychev polynomial expan-
sion to k = 4 for both the graph- and time-spectral filtering.
We set the number of residual blocks to two and configure the
Spe-Seq Cells to five layers. We adjust the negative slope of
LeakyReLU α to 0.2, and dropout to 0.5 for regularization.
We use Adam for optimization.

Table 1. Overview of trainable parameters in the neural net-
work models.

Model Parameter
MLP (4-layer, el+hy) 2.8 M
STF (el+hy) 366 K
Ours (el) 481k
Ours (el+hy) 481k

4.1. Baseline Approaches for Comparison

We compare our approach with relevant baselines for time
series forecasting in the power grid domain, such as a lin-
ear model with trend decomposition, a fully connected neural
network (FNN) and a recurrent neural network, specifically
the LSTM. Given the recent increase in attention towards
transformer-based energy forecasting, we also consider the
time series transformer model (Spacetimeformer, (Grigsby,
Wang, & Qi, 2022), denoted as STF) Additionally, we include
an Attention-based GNN (A3-GCN, (J. Zhu, Song, Zhao, &
Li, 2020)) that has been demonstrated to outperform the clas-
sical GCN on similar forecasting tasks. All baseline models
were trained and validated on the same dataset and with the
same input window size. Each model was trained to reach
convergence on the validation dataset.

5. RESULTS

In this section, we summarize the numerical results to evalu-
ate the proposed method and compare it to the baselines. Ad-
ditionally, we study the output from the graph learning and
compare it to the connectivity of the PSH asset. Furthermore,
we ablate the hydraulic information from the model input to
assess its benefits. All results are based on the dataset intro-
duced in Section 4.

In the initial step, we compare the performance of the adopted
spectral-temporal graph neural network to the baseline mod-
els introduced in Section 4.1 based on normalized mean squa-
red error (NMSE). We summarize model performances in Ta-
ble 2. Our model surpasses all conventional baselines, includ-
ing LSTM (by 28%) and the, in terms of parameters, much
larger FNN (by 14%), as evaluated by the NMSE. A3-GCN
is unable to integrate hydraulic information due to the lack
of a graph. Spacetimeformer (STF) can learn from hydraulic
signals but does not outperform our method.

For the evaluation of A3-GCN, we translate the PSH’s electri-
cal network diagram into a processable graph, as having apri-
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Table 2. Average (normalized) model performance across nodes, comparing six different methods. We indicate whether the
PSH network diagrams were translated into a processable graph for the computation (Network Diagram) and epmhasize if
hydraulic (Hyd.) or electric (El.) information was used for training.

Method El. Hyd. Network Diagram Type NMSE
Linear ✓ ✓ ✗ - 1.11e-1
A3-GCN ✓ ✗ ✓ GCN 8.74e-3
LSTM ✓ ✓ ✗ RNN 7.51e-3
MLP (3-layer) ✓ ✓ ✗ FNN 6.84e-3
MLP (4-layer) ✓ ✓ ✗ FNN 6.21e-3

STF ✓ ✗ ✗ Transformer 5.84e-3
STF ✓ ✓ ✗ Transformer 5.83e-3

Ours ✓ ✗ ✗ Att. GCN 5.71e-3
Ours ✓ ✓ ✗ Att. GCN 5.34e-3

ori graph is a computational requirement for the method. Sur-
prisingly, we found that the A3-GCN is outperformed by the
much simpler LSTM by 14% in terms of NMSE. This find-
ing highlights that the intuitive approach of applying GNN
directly to a graph derived from schematic diagrams, does
not always yield acceptable results. In this context, since our
proposed STGNN is also based on GCN, the 34.7% improve-
ment in NMSE illustrates that, beyond choosing the right
model, finding a suitable computational graph is crucial for
processing PSH data. Our results provide further support for
the observation in (Ringsquandl et al., 2021) that statistical
properties of graphs derived from network diagrams of power
grids may be unsuitable for direct graph processing. Graphs
derived from such network diagrams significantly differ from
those typically discussed in the graph-theoretical literature,
with statistical properties like lower clustering-coefficients,
lower node degrees, and higher graph diameters, which could
explain the subpar performance of A3-GCN in the state fore-
casting task. From a message-passing perspective, the spe-
cific properties of these graphs hinder effective message prop-
agation unless the GNN comprises many layers. Unfortunal-
tely, this model choice, in turn, significantly boosts oversmooth-
ing, which is already a prevalent challenge in the power grid
environment due to the high similarity of the electrical sensor
data.

We assess the performance of time-series transformers (Space-
timeformer), which are structurally similar to our attention-
based GNN approach, because they incorporate a self-attention
layer across the one-dimensional timeseries. However, the
experiment with Spacetimeformer displays a 9.2% reduction
in performance in terms of NMSE compared to the STGNN.
Additionally, we found it difficult to scale Spacetimeformer
to the problem without overfitting. Altrough showcasting re-
spectable performance, compared to the STGNN, STF did not
benefit from the additional information from hydraulic sys-
tems (resulting in a 0.1% improvement).

An advantage of our STGNN, compared to conventional me-
thodology suited for multivariate time series analysis such as

LSTM, is that we have access to the learned graph topology.
To derive insights from the inferred graph, we calculate the
mean attention aij = 1

N

∑N
i=1 aij over the test data set. We

expect our method to converge to the same graph for random-
ized training initialization when learning physical relation-
ships between the sensors. To verify our expectation, we vi-
sually compare the average attention across random seeds in
Figure 4. Additionally, our analysis reveals that the inferred
attention graph’s minimal parameterization yields temporally
stable graphs, accurately reflecting the situation in the PSH,
which usually has stable topology across time.

Interestingly, the attention graph recovers casual relations given
by the functioning of the hydropower plant and therefore shows
similarity to the underlying physical network of the hydropower
plant. In Figure 6, we depict the relationships between the
water inflow (flow-rates, pressures), the generator units (groups
and transformers, indicated by TRF), and the PSH outlets
(substations, denoted by SP), overall making the model’s pre-
dictions more interpretable. Leveraging this interpretability,
we compare Figures 5 and 6. Surprisingly, our model fo-
cuses on the PSH outlets to predict the power plant input’s
phasor currents in the absence of hydraulic information from
the forecast, which could explain the more severe outliers in
the forecast (Figure 3). When adding hydraulic information
to the forecast, we observe that the model makes additional
use of penstock flow-rate and pressure sensor data, thereby
improving the prediction quality.

5.1. Ablation Study

In an ablation study, we exclude the hydraulic sensor data
from the forecast to validate the effectiveness of fusing elec-
tric and hydraulic sensor data for improving the electrical
state forecasting. We find that incorporating the hydraulic
subsystem leads to an 6.5% reduction in NMSE. The NMSE
absolute forecasting performance from the ablation experi-
ment is included in Table 2. Figure 7 and 8 evaluate the rela-
tive improvement on a per-node basis, demonstrating that the
benefits of our methodology are distributed across most sen-
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Figure 3. Comparison of normalized phasor current forecasts with (EL+HYD) and without the hydraulic information (EL)
for our proposed STGNN model. We show the forecast for single node Ni (i = 1) across a randomly selected day including
ground truth. In the upper Figure, we display the dynamic range of the forecast. In the lower Figure, we display the normalized
MSE of both approaches with respect to the ground truth. Removing hydraulic information results in heightened discrepancies
and more pronounced outliers in the predictions. First, we select the data based on the above criteria. Then, we normalize the
selected data using min-max scaling.

Figure 4. The averaged learned attention across the test set of
the attention-based graph learning module over all 58 signals
from the electrical and hydraulic subsystems. We show three
random seeds. The learned attention is stable for different
random initializations.
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Figure 5. The heatmap represents the averaged learned at-
tention by the attention-based graph learning module across
the test set as for the model processing only electrial informa-
tion (EL). Counterintuitively, the model focuses on the PSH
output (SP) when forecasting the phasor currents of the elec-
tromagnetic generators, which represent the PSH input.

sor forecasts (nodes), thereby ensuring that no sensor forecast
experiences a major decline in performance from including
hydraulic sensor information.

6. CONCLUSIONS

In this paper, we demonstrate that integrating information
across the electrical and hydraulic subsystems is beneficial
for state forecasting in pumped-storage hydropower plants
(PSH). Our proposed spectral-temporal graph neural network
is the first approach to integrate information across the PSH’s
subsystems by applying attention-based graph learning, which
effectively represents PSH states for short-term phasor cur-
rent forecasting. Compared to numerical simulation, our me-
thod requires neither knowledge of the underlying network
and sensor connectivity graph nor a tedious calibration step.
Through a real world case study, we demonstrate that rely-
ing exclusively on graphs derived from network diagrams for
state forecasting does not always yield the best performance.
We highlight the advantages of learning a PSH-wide graph,
complementing the critical perspective on network-diagram-
derived graphs introduced in (Ringsquandl et al., 2021). More-
over, we show that our method remains interpretable, unlike
other deep-learning methods that process electrical and hy-
draulic data simultaneously. Future work looks to reintegrate
the underlying network diagram while maintaining the flex-
ibility of attention-based graph learning, thereby harnessing
the strengths of both approaches. This could also allow for
the incorporation of physics-informed losses, such as elec-
tromagnetic generator efficiency or power flow, which may
reduce the volume of training data required.
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Figure 6. The heatmap visualizes the averaged learned attention of the attention-based graph learning module across the test
set visualized for the model that processes both electrial and hydraulic information (EL+HYD). Notably, the model focuses on
the hydraulic subsystem (the PSH input) when forecasting the phasor currents of the electromagnetic generators.
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Figure 7. Relative improvements across the test set (nor-
malized MSE, averaged) for our STGNN models with
(EL+HYD) and without hydraulic information (EL). for each
of the 21 phasor currents sensors of the electric subsystem.
19 out of 21 phasor current forecasts are improved by the ad-
ditional hydraulic information.
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