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ABSTRACT 

Dynamic models of gears are recognized for offering a 

promising platform for gaining a profound understanding of 

the dynamic response, particularly the vibration signature. 

Wear is considered among the most common and concerning 

fault mechanisms in gears, yet its recognition and subsequent 

diagnosis remain challenging. In this study, we introduce an 

existing dynamic model of spur gear vibrations and extend its 

validation for distributed wear-like faults. The novelty of this 

work lies in addressing the complexities associated with 

modeling distributed faults using simplified yet sophisticated 

approaches. These involve variance among defected teeth, 

calculation of time-variant gear mesh stiffness, and 

consideration of the forces induced by the fault. The model is 

validated through pioneering controlled experiments, 

analyzing dozens of degrading distributed wear-like faults. 

This comparison verifies our capability to generate realistic 

simulations of vibration signals from worn gears. To bridge 

the discrepancy between the induced and simulated faults, the 

model first constructs the healthy profile of the inspected 

gear, incorporating manufacturing errors and tooth 

modifications. Subsequently, meticulous photography 

enables the replication of faults in the model with a high 

resemblance to the experiment. The results demonstrate a 

strong correlation between measured and simulated signals, 

as verified through trend analysis of features extracted from 

synchronous average signals in both the cycle and order 

domains. This study lays the groundwork for in-depth 

investigation into the physics of gear wear, paving the way 

for potential applications such as fault severity estimation and 

intelligent fault diagnosis in future studies. 

1. INTRODUCTION 

Predictive maintenance of gear wear is crucial, considering 

gears’ pivotal role in rotating machinery and their constant 

susceptibility to failure due to operation in harsh regimes. 

Gear fault types can be broadly classified into localized faults 

such as breakage and cracks, and distributed faults such as 

abrasive wear and fatigue pitting. Abrasive wear, caused by 

oil contamination and sliding motion, leads to continuous 

destruction of the tooth surface, posing a viable risk of 

catastrophic failure due to reduced gear efficiency and high 

stress concentrations. Nevertheless, Feng, Ji, Ni, and Beer 

(2023) reviewed the latest developments in gear wear 

monitoring and demonstrated that diagnosing gear wear 

through vibration analysis is still challenging due to the 

intricate patterns manifested in the signature that remain 

unresolved. Physical models, such as tribological models 

(Archard, 1953) and dynamic models (Liang, Zuo, and Feng, 

2018; Mohammed & Rantatalo, 2020), have been suggested 

over the years in order to bridge this gap. 

Most of the published dynamic models of gear wear typically 

analyze the effects of wear on the time variant gear mesh 

stiffness (gms). Liu, Yang, and Zhang (2016) utilize a spur 

gear model to study the changes in the gms and transmission 

error due to wear, as well as the wear expression in the 

vibrations. Brethee, Zhen, Gu, and Ball (2017) introduce a 

helical gear model, validated through endurance tests, and 

analyze both the gms and the increase in frictional excitation 

with wear. Many other studies (Chen, Lei, and Hou, 2021; 

Cui et al., 2023; Ren & Yuan, 2022; Shen et al., 2020), 

incorporate Archard’s tribological model in the dynamic 

model to calculate the worn surface, demonstrating the effect 

of wear on the dynamic characteristics. However, most of 

these models lack experimental validation, and in general, the 

coefficients in Archard’s equation are largely unknown, 

making their evaluation in the models nontrivial. 

In this work, we introduce a novel approach for modeling 

distributed wear-like faults in spur gears, validated through 
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experimentation. By leveraging simplifying assumptions, 

this modeling approach effectively captures the dynamic 

response of worn gears, while also facilitating its adaptation 

by other scholars in their models. In Section 2, we introduce 

the framework of the existing dynamic model, establishing 

the groundwork for this study. Section 3 delves into the 

simplified wear modeling approach, while Section 4 presents 

the experimental setup. Model validation is detailed in 

Section 5, accomplished through vibration analysis of the 

synchronous average signals and their spectrum. Finally, 

Section 6 concludes this work, providing insights and 

suggesting potential directions for future research. 

2. DYNAMIC MODEL 

This study adopts the dynamic model for spur gears proposed 

by Dadon, Koren, Klein, and Bortman (2018), which has 

been experimentally validated for healthy gears and various 

localized faults, serving as the foundation for this study. The 

simulated system has an open gearbox with torsional shafts 

connecting the driving pinion to a motor and the driven gear 

to a brake applying external torque, as illustrated in Figure 1. 

The vector of generalized coordinates (u) consists of 13 

degrees of freedom: six for each wheel, representing linear 

displacement (xi,yi,zi) and angular position (θi,φi,ψi) in space 

(where i=p,g), and another for the brake’s angle (θb). Figure 

2 presents a block diagram illustrating the model's stages. The 

vibration signal is generated by solving the Euler-Lagrange 

equations of motion, as described in Eq1. 

 Mü + Cu̇ + K(u) ∙ u = F(t, u) (1) 

Here, M, C, K , and F  are the mass, damping, and stiffness 

matrices, and the excitation force vector, respectively. The 

non-linearity in K(u) arises from the time-variant gear mesh 

stiffness (gms), computed using the potential energy method. 

The model is configured with parameters such as gear 

module, number of teeth, tooth width, and surface quality, 

alongside operational conditions like input speed and load. In 

contrast to many published models, where the gms is the sole 

non-linear component, this model introduces non-linearity in 

the excitation force vector. It incorporates deviations from the 

involute profile, such as surface roughness and faults, as 

displacement inputs along the Line of Action (LoA), which 

are subsequently transformed into forces by appropriately 

multiplying them with the gms. Thus, the excitation force 

consists of three components overall: the motor torque, the 

brake torque, and the force induced by displacements along 

the LoA, as shown in Eq. 2. 

 F = kθpθm ∙ θ̂p + Tb ∙ θ̂b + gms ∙ δ ∙ c̅ (2) 

Here, kθp  is the input shaft torsional stiffness, θm  is the 

motor’s angle, Tb is the brake’s torque, δ is the displacement 

along the LoA, and c̅ is a vector of geometric coefficients 

projecting this force onto u. θ̂p  and θ̂b  are unit vectors 

pointing to θp, θb, respectively. 

 
Figure 1. The simulated system (Dadon et al., 2018). 

 

 
Figure 2. A schematic block diagram of the dynamic model. 

3. GEAR WEAR MODELING 

Any model development is grounded in premises that aim to 

balance the tradeoff between simplicity and reality 

(Mohammed & Rantatalo, 2020). We make the following 

assumptions that simplify our ability to simulate gear wear: 

Assumption I: The worn profile is linear (or piecewise linear) 

and uniform along the tooth width, as illustrated in Figure 3. 

Assumption II: The nominal parameters of the worn profile 

vary slightly among teeth. 

Assumption III: The worn profile influences the cross-section 

properties of the tooth, thereby impacting the potential strain 

energy and, consequently, the gms. 

Assumption IV: Contact properties such as contact ratio, 

pressure angle, and initial contact point remain unchanged. 

However, any deviation from the nominal LoA is treated as a 

displacement input in the excitation force. 

It is crucial to acknowledge the limitations of these 

assumptions, as the gear wear mechanism is more complex, 

involving details not covered by these simplifications, such 

as sliding motion and improper contact. Nonetheless, these 

simplifications establish a foundation for comprehending the 

general wear behavior. The following subsections explore the 

effects of wear on the gms and the excitation force. 
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Figure 3. The simulated worn profile. 

3.1. Effects of Wear on the Gear Mesh Stiffness 

The computation of the gms commonly involves two steps, 

both are affected by wear. The first step employs the potential 

strain energy method for calculating the equivalent stiffness 

of a meshing tooth pair from engagement to separation. In 

this case, the influence of wear is self-evident, as tooth 

geometry is changed, and potential strain energy is derived 

from integration with respect to volume. The second step 

involves combining the equivalent stiffness of all tooth pairs 

based on the contact ratio governing the transition from a 

single pair to a double pair. In a healthy state, the equivalent 

stiffness can be computed once and then replicated and 

concatenated to form the cyclic gms. This procedure stays 

largely similar in case of localized faults, except for swapping 

the equivalent stiffness of one healthy pair with that of the 

defected pair. However, with distributed wear faults, where 

the worn profile varies among teeth, the equivalent stiffness 

is calculated individually for each tooth pair, and then 

meticulously combined, as depicted in Figure 4. 

 

Figure 4. Construction of the gms signal in case of a healthy 

status, localized fault, and distributed fault. 

3.2. Effects of Wear on the Excitation Force 

One of the non-trivial assumptions made is that contact 

properties remain wear-invariant. While this assumption may 

be controversial, it is not without basis when appropriately 

compensated. As explained previously, deviations from the 

LoA are treated as displacement inputs in the excitation 

forces. The computation of the fault displacement involves 

straightforward geometric manipulations according to Eq. 3, 

using parameters depicted in Figure 5. Given that the fault 

displacement is unique for each tooth, it is multiplied by the 

equivalent stiffness of its corresponding pair, and the 

resulting product is then combined using the same procedure 

as in the gms, as depicted in Figure 6. 

 δfault = (Yinvlt − Ydef) ∙
cos(γ)

cos( + γ)
 (3) 

 
Figure 5. An illustration of the fault displacement 

calculation and the required parameters. 

 
Figure 6. Generation of excitation force through fault 

displacement along the LoA, multiplied by the gms. 

4. EXPERIMENTAL SETUP 

We conducted an extensive controlled experiment for model 

validation, employing a dedicated test apparatus for spur 

gears. Vibration data were collected for both a healthy (H) 

status and 35 degrading wear cases (Wi), using piezoelectric 
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accelerometers, alongside rotational speed measured by 

tachometers, as depicted in Figure 7. Details regarding the 

experimental program and gearbox parameters can be found 

in Table 1. The degradation of a reference tooth throughout 

the experiment is showcased in Figure 8. This figure includes 

photographs illustrating three cases corresponding to the 

beginning, middle and the end of the experiment. 

Additionally, a heatmap depicts the contour of all wear cases, 

with the color gradient correlating with fault severity. 

 

Figure 7. The experimental setup employed for validation. 
 

 
Figure 8. Photographs and heatmap depicting the profile 

degradation of a reference tooth throughout the experiment. 

Table 1. Gearbox parameters and experimental program. 

Gearbox parameters 

Module 3mm 

Reduction ratio 35:18 

Precision grade DIN8 

Experimental program 

Input speed 15rps, 45rps 

Output Load 10Nm 

Sampling rate 50kS/s 

Signal duration 60s 

Health status H, {Wi}i=1
35  

5. MODEL VALIDATION 

The validation of the proposed wear modeling approach is 

empirical, relying on a qualitative comparison between 

simulation and experiment. This comparison involves 

analyzing trends in energy-based (such as rms) and shape-

based (such as kurtosis) features extracted from the 

synchronous average (SA) signal and the difference signal in 

the cycle domain, and the SA spectrum in the order domain 

(Matania, Bachar, Bechhoefer, and Bortman, 2024). For both 

simulated and measured data, the SA is computed after the 

raw vibration signal undergoes angular resampling based on 

the output shaft’s speed. It is essential to note that while the 

simulated signal is directly calculated at the wheels’ center, 

the measured signal is significantly influenced by the 

transmission path between the gearbox and the sensor. This 

influence results in expected differences in spectral behavior, 

such as attenuations and resonances (Bachar et al., 2021, 

2023). Consequently, experimental and simulated results are 

presented with left and right y-axes, with energy-based 

features normalized by the healthy (H) status according to Eq. 

4, ensuring comparability of general trends. 

 Fnorm =
|F − FH|

FH
 (4) 

5.1. SA Analysis in the Cycle Domain 

Figure 9 compares SA signals at 45rps in healthy status and 

for severe wear. Expected impulses appear in all the SAs. 

Both experiment and simulation show an amplified signal 

without sharp and rare impulsive responses due to wear, as 

expected. This observation highlights challenges in wear 

monitoring, as faulty signals may not emphasize the fault, 

creating a false impression of a healthy transmission. 

 
Figure 9. Comparison of SA signals between simulation 

(right) and experiment (left) at 45rps, in healthy (green) and 

severe wear (orange) statuses.  

Figure 10 analyzes trends in SA rms, difference rms, and 

difference kurtosis across fault severity. Experimental results 

are depicted with error bars representing the scattering in the 

feature values. The following insights can be derived from 

these results: 
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• There is a strong correlation between simulation and 

experiment in rms trends, particularly evident in difference 

rms, where rms increases monotonously with wear 

degradation. Moreover, the "wavy" trend is observable in 

both simulation and experiment, suggesting that this 

behavior may have a physical basis. 

• The higher speed (45rps) exhibits superior correlation 

between simulation and experiment. The purportedly 

weaker correlation at 15rps may be attributed more to the 

effects of speed and transmission path on the vibration 

signature (Bachar et al., 2021) rather than discrepancies. 

• Kurtosis values are generally low and remain relatively 

stable. Given that kurtosis emphasizes sharp, rare impulses, 

which distributed wear faults are not expected to, it might 

not be suitable for gear wear monitoring. This insight is 

evident both in simulation and experiment. 

• In most cases, discrepancies between simulation and 

experiment are more evident in more severe faults. 

 

Figure 10. Trend analysis of features extracted from the SA 

and difference signals across fault severity at 45rps (top 

row) and 15rps (bottom row). 

 

5.2. SA Analysis in the Order Domain 

A comparison of the SA spectra across fault severity is 

presented in the spectrograms in Figure 11. For clarity, the 

top row in each spectrogram, corresponding to the healthy 

status (H), is thicker and separated from the degrading wear 

cases by a line. High amplitudes at the gearmesh harmonics 

are observed in all spectra, as expected. Furthermore, across 

both speeds and for both simulation and experiment, the 

general behavior with respect to fault severity is similar; that 

is, the spectral energy mostly varies monotonously with 

health degradation. However, the optimal wear manifestation 

for fault detection and degradation monitoring varies across 

different frequency bands for each combination of data 

source and rotational speed, as expected. The differences in 

spectrum background are expected to lead to such 

discrepancies, but as long as they are acknowledged, focus 

can be placed on the similarities obtained between 

experiment and simulation. 

 
Figure 11. SA spectra across fault severity between 

experiment (left) and simulation (right) at 45rps (top) and 

15rps (bottom).  

Early research on gear monitoring (Randall, 1982) 

demonstrates the impact of distributed wear faults on gear 

mesh harmonics and modulation sidebands in the spectrum. 

To capture similar behaviors between simulation and 

experiment, we compute the gear mesh energy (gme) and 

modulation sideband energy (sbe) in the spectrum (X) 

according to Eq. 5-6 and compare their trends across fault 

severity, as depicted in Figure 12. 

 gme = ∑ |X(gm × n)|

 mma 

n=1

 (5) 

 sbe = ∑ ∑ |X(gm × n ± m)|

 m 2⁄

m=1

 mma 

n=1

 (6) 

Here, gmmax is the maximum number of gearmesh harmonics 

available within bandwidth. The following insights can be 

derived from the spectral analysis results: 

• There is a strong correlation between simulation and 

experiment in both gme and sbe trends, closely mirroring 

the energy-based feature analysis in the cycle domain in 

Figure 10.  

• Both spectral energies exhibit a monotonic variation with 

wear degradation, displaying the same "wavy" trend as 

discussed in the cycle domain analysis. 

The spectral analysis aligns with the feature analysis in the 

cycle domain, confirming the similarity between simulated 
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and measured signals. Despite relying on a set of non-trivial 

assumptions, the proposed simplified modeling approach 

successfully captures the general wear patterns in the 

simulated signal. Moreover, while features for monitoring 

localized faults focus mainly on signal shape and modulation 

sidebands, gear mesh energy is also crucial for diagnosing 

wear faults. This holds true in both simulation and 

experiment across different speeds. Discrepancies between 

simulation and experiment, stemming from the assumptions 

made, are more pronounced in severe wear faults, as expected 

due to the challenging assumption of invariant contact 

properties with wear. Nevertheless, the strong similarities 

between simulation and experiment validate the model's 

ability to generate a simulated vibration signal reflecting the 

fundamental characteristics of gear wear. 

 

Figure 12. Comparison of spectral analysis of the gme (left) 

and sbe (right) between simulation and experiment at 45rps 

(top row) and 15rps (bottom row). 

 

6. CONCLUSION 

Gear wear monitoring is crucial for predictive maintenance, 

yet identifying patterns in the vibration signature associated 

with wear remains challenging. This study aims to bridge this 

gap by introducing a novel, simplified approach for 

simulating distributed wear-like faults. We make a set of 

assumptions to investigate wear characteristics essential for 

health monitoring, incorporating wear faults into an existing 

framework of dynamic model for gear vibrations. We 

demonstrated the impact of wear on the non-linear gear mesh 

stiffness and the excitation force according to the proposed 

modeling. Extensive controlled experiments validate our 

approach, comparing experimental and simulated results 

across different speeds and fault severities. A visual 

examination of the synchronous average signal and its 

spectrum across fault severity confirms that the proposed 

wear modeling closely resembles the experimental results, 

yielding similar insights. In-depth trend analyses of features 

in both cycle and order domains reveal crucial insights into 

the intricacies of wear monitoring, capturing "wavy" trends 

as the fault deteriorates. This underscores the importance of 

analyzing energy-based features, such as gear mesh energy 

and sideband energy, rather than shape-based features, for 

monitoring distributed wear faults. The strong correlation 

between experimental and simulated results confirms the 

feasibility of our approach, suggesting it as a simple yet 

effective enhancement for simulating wear faults in any 

standard dynamic gear model. Our study opens avenues for 

practical applications, including refining the simplified 

model for real-system applications and developing novel 

methods for wear prediction in future work. 
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