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ABSTRACT

The railway infrastructure condition is a crucial factor for the
safe and efficient operation of trains. Regular maintenance
is inevitable as the track geometry degrades over time due
to traffic and environmental effects. To restore the ideal po-
sition and provide sufficient durability of ballasted track so
called tamping machines are used. These machines lift the
track, correct the longitudinal level and the alignment of the
track panel and tamp the ballast. During the tamping process
the tamping tines penetrate the ballast bed, fill voids and com-
pact the ballast underneath the sleepers by a squeezing move-
ment with superimposed vibration. A detailed description of
the tamping cycle can be found on section 2. Monitoring and
evaluating this tamping process is essential for maintaining
process quality. This can be achieved through a variety of
sensors, such as incremental encoders, angle encoders, tem-
perature, pressure, and acceleration sensors, coupled with a
measurement unit (DAQ and edge device) to collect, locally
store and transmit the data to a cloud. This paper explores the
development of a rule-based algorithm for assessing the qual-
ity of the tamping process execution in reference to its nomi-
nal chronological sequence. The focus is on identifying tamp-
ing occurrences and classifying them into acceptable (OK)
or non-acceptable (NOK) categories. This involves select-
ing relevant measurement parameters and processing them,
considering the inherent imprecision in real-world processes.
Empirical thresholds are established to differentiate between
good and bad outcomes. The classification approach has to
be sufficiently generic in order to cover a high variety of cus-
tomized tamping machine types. As each machine is individ-
ually designed, the process of generalization is challenging
and complex. The paper demonstrates the accuracy and uni-
versal applicability of the developed rule set across different
tamping machines. The model’s effectiveness is validated us-
ing the Hold-Out-Test-Set method. Furthermore, the rule-set-
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achieved outcomes are compared with results gained from an
LSTM network. Both the rule-based approach and the neural
network demonstrate precision, but the latter requires signifi-
cantly more effort.

1. TRACK MAINTENANCE

For a safe and efficient operation of trains a proper track in-
frastructure is indispensable. Especially on high-speed rail
links the quality of the track and its surroundings is crucial.
Therefore not only the construction but also the maintenance
of the track in order to prevent degradation due to traffic and
environmental effects are important. This involves ensuring
a clean and dry embedding, sufficient proper ballast under-
neath the rails, impeccable condition of the sleepers involved
and restoring the vertical as well as the horizontal position of
the rails. A very detailed description of several track mainte-
nance methods can be found in (Hansmann, 2021).

In Figure 1 an acceptable condition of a track is depicted.
Here a sufficient amount of appropriately sized, clean ballast
is in place. The positioning of the rails in vertical and hor-
izontal direction is within applicable limits. The durability
of the track geometry is ensured through appropriate com-
paction of the ballast.

Figure 1. Acceptable condition
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For the latter tasks so-called tamping machines are used. The
process which results in appropriately compacted ballast is
referred to as tamping. In Figure 2 an example for such a
tamping machine can be seen.

Figure 2. Tamping machine

A crucial part of such working machines is the tamping unit
which is visualized in Figure 3. The lower grey colored com-
ponents are called the tamping tines. They constitute the only
components which are in direct contact with the ballast.

Figure 3. Tamping unit

Ultimately, the focus of this paper is the automatized identifi-
cation of tamping cycles. Subsequently also classifying tamp-
ing cycles into acceptable and non-acceptable cycles, here-
inafter denoted as OK and NOK respectively, will be done.

In Figure 4 a track with an unacceptable positional deviation
can be seen. The ballast condition regarding size, homogene-
ity and cleanness does not fulfil the minimum criteria either.

Figure 4. Unacceptable condition of the track

In Figure 5 it is obvious that the ballast is in an unacceptable
condition. Neither the ballast size nor the cleanness meet the
desired conditions. (Soleimanmeigouni I, Ahmadi A, Kumar
U., 2018) provide a summary, discussion and classification of
existing track geometry measures and track geometry degra-
dation models. Machine learning approaches for diagnosis
and prognosis of rail defects are reviewed by (Chenariyan
Nakhaee, Hiemstra, Stoelinga, & van Noort, 2019).

Figure 5. Unacceptable condition of the ballast

2. TAMPING PROCESS

The main goal of tamping is to correct track faults in longitu-
dinal level and alignment in order to guarantee the operating
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reliability and ride comfort of the trains. The explanations
given in this section are based on (Offenbacher, Koczwara,
Landgraf, & Marschnig, 2023) and (Fellinger, 2017). Fur-
thermore, ballast faults like voids beneath the sleepers should
be corrected so that the load onto the sleepers is equally dis-
tributed and deployed to the underfloor. This also increases
track quality before irreversible damages can occur.

A complete tamping cycle can be decomposed into the fol-
lowing sub-processes:

1. Positioning

2. Lifting and Lining
3. Penetrating

4. Filling

5. Compacting

6. Lifting

Figure 6. Tamping stages

In the Positioning phase it has to be ensured that the tamping
unit is positioned exactly above a sleeper and there is no rel-
ative velocity between the unit and the track. Subsequently,
in the Lifting and Lining phase the rails are correctly posi-
tioned by a separate working unit. Here the rails are lifted
and brought into the desired longitudinal and lateral posi-
tion. Then Penetrating is done and the whole tamping unit
is lowered until the tamping tines sink into the surface and
the lower position is reached. This is followed by the squeez-
ing movement of the tines which basically comprises two sub
processes, Filling (the void caused by the previous Lifting

and Lining with ballast) and Compacting (the ballast under
the sleeper). Finally, rails are released and the tamping unit
is retracted again. This process is known as Lifting. During
all of the stages the vibration has to be active. Thus the tamp-
ing tines are oscillating with 35 Hz for a smoother penetra-
tion and squeezing movement inside the ballast bed (Fischer,
1983).

3. DATA GENERATION/MEASUREMENT SYSTEM

A variety of sensors, such as incremental encoder, angle en-
coders, temperature, pressure, and acceleration sensors are
connected with the control system. An Industrial Internet of
Things (IIoT) edge device is fully integrated with the machine
control system via the machine network. The device collects
and records the data which is transferred to an online platform
by means of a mobile broadband connection.

4. TAMPING ABSTRACTION

Unfortunately, there are not one-to-one relationships between
the recorded measurement signals and the sub-processes as
described in Section 2. Additionally, there are further con-
ditions to be fulfilled to assess the quality of the tamping-
process, e.g., squeezing (consisting of filling and compacting)
shall only be performed when the tamping unit already rests
in the down position and not during penetration. On the other
hand, it is not relevant to distinguish filling from compacting,
but only the process of squeezing and related key parame-
ters as squeezing times are of interest. The sub-process “Po-
sitioning” can only be identified by means of the vehicle’s
speed, in detail, whether the machine is at standstill or not,
but it cannot be checked if it is positioned properly. There are
separate assisting tools which deal with proper positioning.
For example, there is a camera and image recognition system
that makes suggestions to the operator for adjusting the tamp-
ing units properly, especially in turnouts. The operator only
needs to confirm the suggestions (Plasser und Theurer, 2017).
Concluding, the sub-processes as depicted in figure 6 need be
represented by sequences based on and created by real signal
data. Therefore, the signals are transformed into segments of
Boolean representations by means of applying mathematical
operations and threshold values, if required. The correct se-
quence of serial and parallel segments determines the quality
or correctness of the tamping process. The proper sequence
of segments for an acceptable tamping process is depicted in
figure 7.
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Figure 7. Tamping process based on measurement data

However, real data show deviations from theory, like the over-
laps of segments or short unidentified periods between seg-
ments (i.e., pauses) which should be in series. Furthermore,
differing start or end times of segments which should be syn-
chronous may occur. The inaccuracies are caused by different
sampling rates of the individual signals or temporal shifts in-
duced by mathematical operations. Thus, there are parts in
the sequences which do not follow the strict theoretical rules
but can be considered as valid to a certain extent. The impre-
cision necessitates the definition of further rules to qualify a
tamping process.

5. LONG-SHORT-TERM-MEMORY

The Long Short-Term Memory (LSTM) network was invented

by Sepp Hochreiter and Jiirgen Schmidhuber in 1997 (Hochreiter

& Schmidhuber, 1997). Long Short-Term Memory (LSTM)
is a type of Recurrent Neural Network (RNN) architecture
used in the field of deep learning. LSTMs are designed to
avoid the long-term dependency problem typical of standard
RNNS, enabling them to remember information for long peri-
ods. This makes LSTMs particularly useful for tasks involv-
ing sequential data, such as time series analysis, natural lan-
guage processing (NLP), speech recognition, and more. The
key to LSTM’s ability to retain long-term memory is its cell
state, along with its various gates that control the flow of in-
formation. An LSTM unit typically comprises the following
components:

» Forget Gate f;
* Input Gate 44
e Cell State ¢;
*  Output Gate o

The Forget Gate decides what information should be thrown
away or kept. It looks at the current input and the previous
hidden state and outputs numbers between 0 and 1 for each
number in the cell state (Cy—1). A value close to 1 means
to keep the information, while close to 0 means to forget it.
The Input Gate decides what new information will be stored
in the cell state. It involves two parts: one Sigmoid layer
that decides which values to update, and a Tanh layer that
creates a vector of new candidate values that could be added
to the state. The cell state is the key innovation of LSTMs.
It runs straight down the entire chain, with only minor lin-
ear interactions. It’s very easy for information to just flow

along it unchanged. The cell state is modified by the forget
gate and the input gate. The Output Gate determines the next
hidden state, which contains information on previous inputs.
The hidden state can be used to make predictions. The output
gate looks at the current input, the previous hidden state, and
the current cell state, and decides what the output should be.
These components work together to allow the LSTM to de-
cide when to allow data to enter, when to forget data because
it’s no longer useful, and when to let it impact the output at
the current timestep. This selective memory capability helps
LSTMs to perform exceptionally well on tasks where the con-
text or the sequence of data points is important.

A Bidirectional Long Short-Term Memory (Bi-LSTM) net-
work is an extension of the traditional Long Short-Term Mem-
ory (LSTM) network. It enhances the original LSTM by pro-
viding two layers that process the input sequence in both for-
ward and backward directions. By processing sequences in
both directions, Bi-LSTMs can capture context from both the
past and the future relative to a specific point in the sequence.
The key idea behind a Bi-LSTM is that at any point in time,
the network has access to information from both the begin-
ning and the end of the sequence, making it especially pow-
erful for tasks where context from both directions is crucial
for understanding or predicting the elements of the sequence.
Mathematically, a Bi-LSTM combines the outputs from two
separate LSTM layers — one processing the input sequence
from start to end and the other processing it from end to start.
The outputs of these two LSTMs can be merged in various
ways (e.g., concatenation, summation, or averaging) to form
a single output that provides a comprehensive context-aware
representation of each point in the sequence. Bi-LSTMs are
widely used in various sequence modeling tasks, such as nat-
ural language processing for named entity recognition, senti-
ment analysis, and machine translation, as well as in bioin-
formatics and speech recognition, where understanding the
context from both directions can significantly enhance model
performance.

In Figure 8 a typical (vanilla-)LSTM is depicted. In the graph
the o stands for the Sigmoid activation and the tanh for Hy-
perbolic Tangent activation function. g, represents the input
activation and the x an element wise multiplication.

(De Simone et al., 2023) describe the application of a LSTM
model for the failure prediction of rolling stock equipment, in
detail of the traction converter cooling system, but also give a
rough overview on other LSTM-based prediction algorithms
in the railway industry.
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Figure 8. LSTM workflow
(Park & Kim, 2020)

6. RULE BASED DETECTION
6.1. OK Tamping cycle detection

In order to identify and evaluate tamping cycles based on the
time series of the measurement channels, boolean signals are
created and assembled, as depicted in Figure 9. A sampling
rate of 10 Hz was chosen in order to ensure an appropriate res-
olution of the signals. Each row of the visualization in Figure
9 is a time increment. Column a stands for “engine running”,
which means that the engine of the tamping machine has to
be switched on and a minimum rotational speed has to be ex-
ceeded. The second column b represents the tamping cycle
initialization which is done by the operator by means of a
foot-operated pedal. In the ¢ column it is listed whether the
superimposed vibration of the tamping tines is activated or
not. d indicates the proper lifting and lining of the rails. In
e one can see if the tamping unit’s relative velocity falls be-
low a very low threshold value with respect to the rails. This
means that ”the tamping unit stands still” or it is in a very slow
movement at least. The penetrating phase is described in col-
umn f via checking the downward movement of the tamping
units, in detail, it is true if it moves and false if not. Column
g shows if the tines are in the desired lower position. This is
again realized by applying a threshold value to the tamping
unit’s positional encoder. In column h the squeezing move-
ment is depicted. It is true if the tamping tines are moved
towards each other to fill and compact the ballast under the
sleeper and false else. In the last column i the retraction, the
lifting of the unit, is depicted. For the consideration of mea-
surement and transmission errors small deviations are toler-
ated. This means that also segments which are disconnected
by only one or two time increments are regarded as one full
coherent segment.

Figure 9. Tamping identification

The following criteria are established for the tamping cycle
identification and classification:

e duration of each individual segment
* simultaneity of segments

e duration of sections with overlapping segments which
should not be simultaneous

» serial sequence of segments or detachment of consecu-
tive signals

» duration between consecutive segments

The definition of permissible durations, serial sequences, con-
currences etc. requires both profound domain knowledge about
the tamping cycle and empirical insights based on real data.
For example, the ideal minimum squeezing time, i.e., the du-
ration from start of the filling phase until the end of com-
paction phase, is defined as about 1.2 seconds by a manu-
facturer of tamping machines. However, there can be na-
tional regulations which specify a deviating squeezing dura-
tion. Another example can be the temporal succession of the
lifting and penetration phases. Ideally, these two sequences
are strictly in series. However, the downward movement of
the tamping unit can already start when the lifting of the rail
is still in progress provided that a void has formed as soon
as the tamping tines enter the ballast. Concluding, a certain
duration of parallelism is permissible in this case. Further-
more, it is also acceptable that there is a short pause between
the segments. Thus, the definition of such thresholds and
tolerances requires experience and sensitivity from the en-
gineers and data analysts. Usually the threshold values are
determined empirically or are defined be national regulations
depending on where the machine is operated.

In order to get an intuitive feeling about the identification pro-
cess several consecutive tamping cycles are depicted in Fig-
ure 10, where blue sections represent boolean true and or-
ange, boolean false. The columns are identical to those in
Figure 9.
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Figure 10. Tamping identification of multiple cycles

6.2. NOK Tamping cycle detection

In order to obtain the desired process quality all sub-processes
have to have the appropriate duration and also the sequence
of the consecutive sub-processes has to satisfy the correct or-
der, which means that the subsequent signal has to follow the
previous one within a certain amount of time. Therefore the
following error scenarios can occur:

* vibration off

* incomplete vibration

 relative velocity

* no stand still

* incomplete stand still

* no leveling

* incomplete leveling

* no penetration

* no down position

* incomplete down position

* no squeezing movement

* penetration before lifting the rails

* squeezing before down position

* lifting the tamping unit before squeezing
The time-series signals of an example of detected NOK tamp-
ing cycles are depicted in Figure 11 - a better quality of the
plot can be found in the Appendix 9, too - where the upper
graph shows the lowering position of a tamping unit. Nega-
tive values indicate positions of the tamping tines above the
rail, zero is approximately the level of the rail’s surface and
positions greater than 120 mm can be considered as the tines
entering the ballast. The lower graph illustrates the machine’s

velocity in m/h. Based on the developed cycle identification
an impermissible overlap of the two sections “vehicle stands

still” and “’tamping tines are in the ballast” could be detected.
The overlap is highlighted in red colour in Figure 11. These
overlaps indicate that the tines are already located in the bal-
last even though the machine is still moving can cause signif-
icant wear on or even severe damage of the tamping unit.

left inside tamping unit position

displacement (mm)

11:4200 14215 11:42:30 14245 114300
Nov 25,2020

working speed

speed (m/h)

11:4200 11:42:15 11:42:30 11:42:45

11:43:00
Nov 25,2020

Figure 11. Identified NOK tamping cycle: The tamping unit
is already in the ballast even though the machine is still mov-
ing (see also Appendix)

7. LSTM DETECTION
7.1. Architecture
After several trials regarding the structure of the network, the
architecture depicted in 9 was chosen.
Input
Bi-L5TM
Fully Connected

Relu

Qutput

Regression

Figure 12. LSTM architecture

The network consists of:
e Input Layer
* Bi-LSTM Layer
* Fully Connected Layer
e ReLU Activation
e Output Layer
* Regression Output

The input layer is the bottom-most layer, where the input, the
previously generated boolean signals, is fed to the network.
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Subsequently data is passed to the Bi-LSTM layer which con-
sists of 25 hidden units. Bidirectional LSTMs can be useful
when the context of the input is needed from both the past
and the future of a specific time step. This turned out to be
the case in the cycle identification. Following the Bi-LSTM
layer, there is a fully connected layer which takes the sequen-
tial output from the Bi-LSTM and transforms it into a fixed-
size vector. This layer has 10 units, and it is likely responsi-
ble for integrating the features learned by the Bi-LSTM layer.
After that a non-linearity in form of a ReLLU activation func-
tion is applied. Therewith the model is allowed to account for
non-linear relationships between the features. The next layer
is another fully connected output layer with a single unit. This
is because the network is designed to output a single contin-
uous regression value. The final layer is a regression output
layer with the mean squared error as loss function.

7.2. Training

The analysis workflow was implemented in Matlab and it
turned out that training for only 10 epochs with 225 itera-
tions each is sufficient. For the training the timeseries were
split into windows of 10 seconds each and a step size of 5
seconds was chosen. Therefore an overlap of 50% occurred
intentionally. The training was done with a learning rate of
0.001 on a single GPU. and the training in total only took a
couple of minutes. The metric used in training was RMSE
(root mean square error).

7.3. Results

In Figure 13 the cycle detection can be seen. This graph can
also be found in the appendix. In this visualization the gray
rectangles represent the tamping cycles and also their dura-
tion. A nearly perfect fit can be found here. There is no visi-
ble deviation between the LSTM and the rule based results.

Figure 13. LSTM tamping cycle detection (see also Ap-
pendix)

Using the hold-out test set method, an accuracy of 0.98 was
achieved.

8. CONCLUSIONS

The comparison of the two tested methods for tamping cycle
identification, i.e. the rule-based vs. the LSTM approach, it
can be concluded that:

1. The accuracy of the rule-based method is approx. 100%,
whereas that of the LSTM model is approx. 98% tak-
ing only OK detections into consideration. Obviously,
the rule-based approach, which basically consists of a
set of subsequent if-queries, delivers better results due
to the fact that the rules exactly represent the definition
of a correct tamping cycle. But the exact representation
requires profound domain knowledge of and experience
on the tamping procedure and the data acquisition pro-
cess. When lacking this knowledge and experience the
neural network, which defines its own rules by adjust-
ing its learnable parameters, the weights and biases, by
evaluating the time series over and over, turns out to be a
suitable alternative to still get very accurate results.

2. The implementation effort for the LSTM model is much
higher as well as the required hardware and processing
resources for training and evaluating the network.

3. The pre-processing of the data and the generation of the
boolean sub-processes is the same for both methods.

4. The identification of the NOK tamping cycles is more
difficult for the LSTM approach due to the lack of suffi-
cient amount of NOK cycles in real world training data
because operating errors rarely occur. A possible solu-
tion would be to artificially generate error cases in order
to allow the model learn incomplete sequences.

9. FURTHER STEPS

The LSTM approach as described is capable of identifying
OK-cycles. However the NOK-cycles are of higher interest
with regards of wear and resulting maintenance. However
these cases do not occur sufficiently frequent in real world
data. Therefore artificial samples could be generated and be
fed to the training set. Another approach could be weighing
the very rarely occurring failure cycles higher than the fre-
quently occurring OK cycles in order to balance the training
set. Furthermore it should be checked if the found algorithm
is generic enough to also fit to other machines and surround-
ings. Thus it shall be enrolled to different machines operating
in different regions of the world in order to compare results
and performance subsequently. On the other side also other
algorithms shall be implemented and compared. Therefore
the time series should again be split into small segments e.g.
0.1s and each of these segments should be classified by dif-
ferent machine learning algorithms according to the features
within the respective segment.
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Figure 11. Identified NOK tamping cycle: The tamping unit is already in the ballast even though the machine is still moving
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Figure 13. LSTM tamping cycle detection
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