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ABSTRACT 

Fault diagnosis is essential to ensure bearing safety in 

industrial applications. Many existing diagnostic methods 

require large scales of data from a full range of working 

conditions. However, the structure and working conditions 

differences between machines lead to significant variation in 

data distribution, making it difficult to diagnostic with 

unseen samples. To handle this situation, an unknown 

condition diagnosis Framework (UCDF) based on physics-

driven diffusion network (DiffPhysiNet) is proposed, 

effectively integrating the generation capability of the 

diffusion model and learning from the working conditional 

encoding (WCE). Specifically, signals under limited 

working conditions are gradually convert to noise through a 

forward noising process. Then, DiffPhysiNet reconstructs 

signals from the noise by a reverse denoising process. In 

addition, a physics-driven UNet (Physi-UNet) structure is 

designed to extract WCE for noise level prediction during 

the reverse process. Moreover, an Unsupervised Clustering 

Filter (UCFilter) is constructed to select signals with high 

quality after generation. Signals under unknown working 

condition can be generated with certain WCE. Ultimately, 

extensive experiments on two bearing datasets (SDUST and 

PU) validate the effectiveness of our method compared with 

the state-of-the-art baselines and the ablution test confirms 

the significant role of Physi-UNet and UCFilter. 

1. INTRODUCTION 

Rotating machinery is crucial in modern industry, 

highlighting the need for effective condition monitoring and 

fault diagnosis technology to ensure its security and 

reliability (Kordestani et al. 2021). Deep learning-based 

approaches have gained significant attention in machine 

condition monitoring as a data-driven fault diagnosis 

method(Zio 2022). 

For deep learning to effectively diagnose faults in rotating 

machinery, it requires consistency in the data distribution 

between training and testing sets. However, practical 

industrial applications often present challenges that hinder 

the applicability of deep learning methods, which can be 

concluded as follows: (1) Rotating components often 

operate under varied conditions, such as changes in 

rotational speed and load (Chen and Li 2017). (2) Obtaining 

sufficient labeled data with precise health information 

across all operating conditions can be impractical. (3) 

Domain shift issues arise when attempting to compensate 

for information gaps by utilizing labeled data from multiple 

machines or different working conditions. Also, due to 

discrepancies in data (Ben-David et al. 2010).  

In recent years, various advanced techniques have been 

developed to tackle the aforementioned challenges. One of 

these techniques is domain adaptation (DA), which aims to 

reduce the distribution discrepancy between the source and 

target domains during model training (Wang et al. 2020). 

DA allows the transfer of knowledge acquired from large 

source datasets to construct diagnostic models for smaller 

target datasets with similar characteristics. Wang et al. 

proposed the use of intra-class maximum mean discrepancy 

(MMD) in conjunction with multi-scale ResNet 

architectures to reduce the conditional distribution 

discrepancy of vibration signals (Wang et al. 2020). Hu et al. 

introduced tensor-aligned invariant subspace learning, 

which enables the discovery of a shared tensor 

representation for cross-domain diagnosis cases (Hu, Wang, 

and Gu 2020). Inspired by adversarial learning principles, Li 

et al. developed a method to map knowledge from target to 

source working conditions using generative adversarial 

networks (Li et al. 2021). Domain adaptation techniques can 

improve the robustness and generalization capabilities of 

fault diagnosis models. However, these methods are limited 

by the closed-set assumption, meaning that the source and 
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target domains have feature distributions that cannot be 

crossed (Si et al. 2021). 

Under this premise, it is necessary to develop a technique 

that takes the out-of-distributed (OOD) fault classification 

into account (Michau and Fink 2019). Generative 

Adversarial Networks (GANs) nowadays adopts an 

unsupervised learning method and automatically learns from 

the source data. In the applications of PHM, conditional 

GANs have been used to control the generation process to 

generate desired distinct classes. Wang et al. introduced an 

enhanced version of Least-Square Generative Adversarial 

Networks (LSGANs) which notably retain more signal 

details compared to traditional methods and exhibit 

significant robustness (Wang et al. 2019). However, these 

methods are only suitable for generating data from 

previously observed conditions and not for generating 

previously unseen conditions in a specific domain 

(Rombach, Michau, and Fink 2023). The latter is the focus 

of our research. For the issue of the diagnostic works under 

unseen working conditions, propose a new framework for 

Open-Partial DA based on generating distinct fault 

signatures with a Wasserstein GAN, which enables a better 

transferability between two different domains (Li et al. 

2022). However, the main drawback of GANs is that they 

are unstable during the training process and it is hard to 

embed diagnostic knowledge during the process of 

generation(Cui et al. 2023). Nowadays, same as a generative 

model, diffusion model does not suffer from GANs-like 

problems of training non-convergence and pattern collapse.  

To achieve the stable and effective diagnostic framework 

for unseen working conditions based on feature embedding, 

we first propose a Physics-Driven Diffusion Network 

(DiffPhysiNet) for unknown condition diagnosis, which can 

generate a complete bearing sample of industrial 

environments and maintain the real-world working 

conditions through physics-informed methods. DiffPhysiNet 

effectively integrates the generation capability of the 

diffusion model and embeds working conditional encoding 

(WCE). Essentially, the forged signals generated by 

DiffPhysiNet guarantee the generation accuracy while 

retaining the utility. To summarize, the primary 

contributions of this work are concluded as follows: 

⚫ A denoising diffusion-based generative model 

DiffPhysiNet is proposed, which can generate high-

quality signal data. 

⚫ A novel neural network structure called Physi-UNet, 

which integrates the residual block and attention 

mechanism to model signal features of bearings. 

⚫ UCFilter is constructed based on K-means clustering 

method to select the valuable signals after generation. 

The remainder of the paper is structured as follows: In 

Section 2, we provide background information relevant to 

our research and in Section 3, we formally introduce the 

proposed diagnostic framework and its components in detail. 

Section 4 outlines the dataset utilized and presents the 

experimental results and in Section 6, we summary our 

work and proposes some research directions for the future. 

2. PRELIMINARY 

In this section, we first briefly introduce the basic 

knowledge of Denoising Diffusion Probabilistic Models 

(DDPM) (Shu, Li, and Farimani 2023) and Fourier Neural 

Operator (FNO)(Rafiq, Rafiq, and Choi 2022), which are 

the fundamentals of the proposed DiffPhyisNet.  

2.1. Diffusion model 

 

Figure 1. Two processes in Denoising Diffusion 

Probabilistic Models 

As shown in Figure 1, the diffusion model that typically 

contains two processes: forward process and reverse process. 

In this setting, a sample from the data distribution 𝑥0~𝑞(𝑥) 
is gradually noised into a standard Gaussian noise 

𝑥𝑇~𝒩(0, 𝐼) by the forward process, where the transition is 

parameterized by 𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = 𝒩(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐈) 

with 𝛽𝑡 ∈ (0,1)  as the amount of noise added at diffusion 

step 𝑡.  
A neural network learns the reverse process of gradually 

denoising the sample via reverse transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) =
 𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡 , 𝑡), ∑𝜃(𝑥𝑡 , 𝑡)) .Learning to clean 𝑥𝑇 

through the reversed diffusion process can be reduced to 

learning to build a surrogate approximator to parameterize 

𝜇𝜃(𝑥𝑡 , 𝑡)  for all 𝑡.  The denoising model 𝜇𝜃(𝑥𝑡 , 𝑡)  can be 

trained by using a weighted mean squared error loss which 

we will refer to as: 

ℒ(𝑥0) =∑ 𝔼
𝑞(𝑥𝑡|𝑥0)

𝑇

𝑡=1

∥∥𝜇(𝑥𝑡 , 𝑥0) − 𝜇𝜃(𝑥𝑡 , 𝑡)∥∥
2 (1) 

where 𝜇(𝑥𝑡 , 𝑥0) is the mean of the posterior 𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ). 
This objective can be justified as optimizing a weighted 

variational lower bound on the data log likelihood. Also 

note that the original parameterization of 𝜇𝜃(𝑥𝑡 , 𝑡) can be 

modified in favor of �̂�0(𝑥𝑡 , 𝑡, 𝜃)or𝜖𝜃(𝑥𝑡 , 𝑡). 

2.2. Fourier neural operator 

 

Figure 2．The full architecture of neural operator 
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The main idea of FNO is to use Fourier transform to map 

high-dimensional data into the frequency domain and 

approximate nonlinear operators by learning the 

relationships between Fourier coefficients through neural 

networks. The FNO architecture is shown in Figure 2, 

which consists of three main steps:  

a) The input 𝑎(𝑥) is lifted to a higher dimensional 

representation 𝑣0(𝑥) = 𝑃(𝑎(𝑥)) by the local 

transformation 𝑃 , which is commonly parameterized 

by a shallow fully connected neural network. 

b) The higher dimensional representation 𝑣0(𝑥)  is 

updated iteratively by: 

𝑣𝑡+1(𝑥) = 𝜎(𝑊𝑣𝑡(𝑥) + (𝒦(𝑎;𝜙)𝑣𝑡)(𝑥)) (2) 

where (𝒦(𝑎; 𝜙)𝑣𝑡)(𝑥)  is a linear transform on the 

frequency domain of the amplitude and the phase of 

𝑣𝑡(𝑥), 𝑊: is a linear transform on the high-dimension 

of the time domain. 𝜎 : is the non-linear activation 

function. 

c) The output 𝑢(𝑥) is obtained by 𝑢(𝑥) = 𝑄(𝑣𝑇(𝑥)) , 

where 𝑄 : is the projection of 𝑣𝑇 , and it is 

parameterized by a fully connected layer. 

ℱ and ℱ−1are denoted as Fourier transform and its inverse 

transform of a function, allowing the operations on the 

frequency domain of the high-dimension. The Fourier 

neural operator (FNO)(Lehmann et al. 2024) aims to map 

between two infinite-dimensional spaces by training on a 

finite set of input–output pairs. It has been demonstrated 

that the FNO can serve as a universal approximator capable 

of accurately representing any continuous operator. 

3.  PROPOSED METHOD 

In this section, we elaborate on the proposed DiffPhysiNet 

framework as shown in Figure 3. We start by presenting the 

diagnostic principles and steps of the proposed method 

under unseen working conditions. Then, we introduce the 

details of the denoising model, i.e., Physi-UNet. 

Furthermore, UCFiler utilize K-means to cluster some 

generated sample to prove the generation quality is also 

introduced. 

3.1. Diagnostic principles of DiffPhysiNet 

As illustrated in Figure 3, aiming at the diagnostic under 

unseen working conditions, 4 parts (a-d) are involved in the 

framework. 

 

Figure 3. The diagram of proposed DiffPhysiNet framework 

(a) The first part is based on the diffusion model which is 

introduced in 2.1, utilizing this generative model rather than 

other generative methods mainly attribute to the style 

embedding convenience which ensures that generated fault 

signatures contain physics-driven features. (b) The second 

part aims to construct a latent space with conditional 
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encoding methods, making sure of that the projection space 

of working conditions are continuous. (c) The third part 

utilizes an unsupervised clustering method to select 

qualified generated signals guaranteeing the effectiveness of 

the training datasets. (d) The last part is the application stage 

of this proposed method, utilizing the selection of generated 

signals for the diagnostic model training. Then the validated 

diagnostic model can be applied for online fault diagnosis. 

3.2. Structure of Physi-UNet 

As aforementioned, the diffusion model (DDPM), A neural 

network learns the reverse process of gradually denoising 

the sample via reverse transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) =
 𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡 , 𝑡), ∑𝜃(𝑥𝑡 , 𝑡)) .Learning to clean 𝑥𝑇 

through the reversed diffusion process can be reduced to 

learning to build a surrogate approximator to parameterize 

𝜇𝜃(𝑥𝑡 , 𝑡) for all 𝑡. In our proposed framework, Physi-UNet 

is utilized for the process of denoising estimation, of which 

the structure is shown in Figure 4. As illustrated in the 

figure, an implicit U-Net is introduced to enhance Fourier 

neural operator. The denoised signal after (𝑇 − 𝑡) steps is 

utilized as the input, which is then converted into a high-

dimensional representation via the lifting layer 𝑃 , and 

finally the output is obtained through the projection of 𝑄, 

converting the vectors from a high-dimensional space to 1D 

vibration signal (Benitez et al. 2023) . 

The structural design of the Physi-UNet is based on the 

hypothesis that the Fourier spectrum of fault data can be 

expressed as the sum of (1) domain-specific components 

(the spectrum of a signal from normal operation) and (2) of 

fault-specific components representing the specific fault 

characteristics. In other words, this hypothesis allows us to 

express Fourier coefficients (Dang and Ishii 2022) of the 

fault data of a certain class 𝑐  from a specific domain 𝕏 

(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏
𝑐,𝐹𝐹𝑇

) as a sum of domain-specific characteristics that 

are represented by the domain features 𝑥𝕊
𝐹𝐹𝑇  and the fault 

class specific characteristics that are domain-independent 

𝑥𝑓𝑎𝑢𝑙𝑡
𝑐,𝐹𝐹𝑇

 𝑓𝑎𝑢𝑙𝑡 and scaled by a factor 𝑤 , which can be 

expressed by: 

𝑥𝑓𝑎𝑢𝑙𝑡,𝕏
𝑐,𝐹𝐹𝑇 = 𝑥𝕏

𝐹𝐹𝑇 + 𝑤 ∗ 𝑥𝑓𝑎𝑢𝑙𝑡
𝑐,𝐹𝐹𝑇 (3) 

The physics-driven fault component and the domain specific 

features are demodulated based on the embedding of Times 

Step 𝑡  and the continuous working conditional encoding 

(WCE), which is of great importance on the guidance of 

feature decomposition. As shown in Eq. (4). 

{
 
 

 
 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎 𝒙𝒕 (

𝑄𝐾⊤

√𝑑
) ⋅ 𝑉

𝑥𝑓𝑎𝑢𝑙𝑡,𝕏
𝑐,𝐹𝐹𝑇 = 𝒙𝒕 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)

𝑄 = 𝑊𝑄 ⋅ 𝑥𝑡 , 𝐾 = 𝑊𝐾 ⋅ 𝑥𝑡 , 𝑉 = 𝑊𝑉 ⋅ 𝑥𝑡

(4) 

where 𝒙𝒕 ∈ ℝ
𝑐×𝑛  ( 𝑐  and 𝑛  represent the dimensions and 

length of the signal) is the given input, W𝑄, W𝐾 , and W𝑉 are 

learnable parameter matrices from the embedded Timestep 𝑡 
and the encoded working condition. 

Hence, the fault components of the vibration signals are 

captured in using Fourier bases: 

𝐴𝑖,𝑡
(𝑘) = |ℱ(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏

𝑐,𝐹𝐹𝑇 )𝑘|, 𝛷𝑖,𝑡
(𝑘) = 𝜙(ℱ(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏

𝑐,𝐹𝐹𝑇 )𝑘), (5) 

𝜅𝑖,𝑡
(1),⋯ , 𝜅𝑖,𝑡

(𝐾) = 𝑎𝑟𝑔 𝑇𝑜𝑝𝐾
𝑘∈{1,⋯,⌊

𝜏
2
⌋+1}

{𝐴𝑖,𝑡
(𝑘)}, (6) 

𝑃𝑖,𝑡(𝑥) = ∑  

𝐾

𝑘=1

𝐴
𝑖,𝑡

𝜅𝑖,𝑡
(𝑘)

𝑐𝑜𝑠 (2𝜋𝑓
𝜅𝑖,𝑡
(𝑘)𝜏𝑐 + 𝛷𝑖,𝑡

𝜅𝑖,𝑡
(𝑘)

) , (7) 

 

Figure 4. The structure of proposed Physi-UNet enhanced with FNO and U-Net component 
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where arg TopK is to get the top 𝐾  amplitudes and 𝐾  is a 

hyperparameter. 𝐴𝑖,𝑡
(𝑘)

, Φ𝑖,𝑡
(𝑘)

are the phase, amplitude of the 𝑘-

th frequency after the discrete Fourier transform ℱ 

respectively. 𝑓𝑘 represents the Fourier frequency of the 

corresponding index 𝑘 . In fact, the Fourier layer selects 

bases with the most significant amplitudes in the frequency 

domain, and then returns to the time domain through an 

inverse transform to model the physics-driven fault features.  

The U-Net structure is utilized to synthesis the 

corresponding domain features according to the residue 

component after removing the fault frequencies.  

𝐷𝑖,𝑡(𝑥) = 𝑈𝑁𝑒𝑡(𝑣0(𝑥) − 𝑃𝑖,𝑡(𝑥)) (8) 

where the 𝑃𝑖,𝑡 is selected fault component and the  𝐷𝑖,𝑡 is the 

obtained domain features. 

𝐷𝑖,𝑡  and 𝑃𝑖,𝑡  are then reweighted and activated in the 

following process, the summation and projection combine 

the physic-driven and domain feature components, which 

can be expressed as: 

𝐶𝑖,𝑡(𝑥) = 𝜎2[𝑈𝑁𝑒𝑡(𝑣0(𝑥) − 𝑃𝑖,𝑡) +  𝜎1[𝑊(𝑃𝑖,𝑡)]] (9) 

𝑥𝑡−1 = 𝑄 (𝐶𝑖,𝑡(𝑥)) (10) 

where σ1[∙] and σ2[∙] are the activation function, 𝑊(∙)is the 

reweight layer, 𝑄(∙) is the projection layer aforementioned, 

𝑥𝑡−1is the out put of this diffusion step. 

3.3. Unsupervised Clustering Filter 

Once the DDPM in the DiffPhysiNet training is completed, 

the working conditions of signal generation is controlled by 

the WCE. As shown in Figure 5. the generated signal 

clustered by K-means algorithm, which is an unsupervised 

clustering method. The top of n samples nearest to the signal 

sample center selected as valuable signals.  

The distances between inter-class samples are measured by 

distribution probability based on Kullback-Leibler 

divergence between the joint probabilities 𝑅𝑖𝑗  in the high-

dimensional space and the joint probabilities 𝑇𝑖𝑗  in the low-

dimensional space. The values of 𝑅𝑖𝑗 are defined to be the 

symmetrized conditional probabilities, whereas the values of 

𝑇𝑖𝑗  are obtained by means of the Student’s t-distribution 

with one degree of freedom. The calculation is summarized 

as follows: 

𝑟𝑖𝑗 =
𝑟𝑖|𝑗 + 𝑟𝑗|𝑖
2𝑛

(11) 

𝑡𝑖𝑗 =
(1 + |𝑦𝑖 − 𝑦𝑗|

2)
−1

∑ (1 + |𝑦𝑘 − 𝑦𝑙|
2)−1𝑘≠𝑙

(12) 

where 𝑟𝑖|𝑗  is the distribution probability of sample point 𝑗 

when the sample point 𝑖  is given. 𝑦  is the generated 

samples. The values of 𝑟𝑖𝑖  and 𝑡𝑖𝑖  are set to zero. The 

calculation of the Kullback–Leibler divergence 𝐶𝑑 between 

the two joint probability distributions 𝑅  and 𝑇 is given as 

follows: 

𝐶𝑑 = 𝐾𝐿(𝑅 ||𝑇) =∑ ∑ 𝑟𝑖𝑗
𝑗

log 𝑟𝑖𝑗
𝑖

− 𝑟𝑖𝑗 log 𝑡𝑖𝑗 (12) 

After calculated the Kullback–Leibler divergence 𝐶𝑑  of 

every sample in generated signals, the selection boundaries 

are decided according to the expectation numbers of 

acceptable samples 𝑛 , and 𝑘  value of the Boundary 

Decision indicates the portion of selected samples (𝑘=𝑛 𝑁⁄ ). 

  

 

Figure 5. The steps of unsupervised clustering filter method 

4. EXPERIMENTAL VALIDATION 

4.1. Experiments Setting 

To assess the diagnostic model's performance in unfamiliar 

conditions, we conducted two experimental case studies 

using test rigs from SDUST (Jia et al. 2020) and the 

Paderborn University bearing dataset (PU dataset) for 

bearing fault diagnosis. The first case involves a constant 

domain shift with the rig operating at various constant 

speeds, while the second case examines a constant domain 

shift with the rig operating under multiple conditions of 

variable rotational speeds and loads. These experiments 

confirm the effectiveness of the DiffPhysiNet method, 

which utilizes diffusion models, for complex industrial 

applications. 

 

Figure 6. Experimental platform of SDUST dataset (a) and 

PU dataset (b). 
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4.1.1. Description of SDUST dataset and Case1 

Figure 6 (a) shows the experimental platform of SDUST, 

which includes a motor, a shaft coupling, a rotor, a testing 

bearing, a gearbox, and a break.The bearing type utilized is 

N205EU, with data collected across four health conditions: 

normal (NOR), inner ring fault (I), rolling element fault (B), 

and outer ring fault (O). Four distinct working conditions 

were tested at speeds of 1000, 1500, 2000, and 2500r/min. 

The experiment sets four diagnostic cases for unseen 

working conditions across domains: T1000, T1500, T2000, 

and T2500 as shown in Table 1. 

 

4.1.2. Description of PU dataset and Case2 

The test rig of PU dataset is shown in Figure 6 (b), which is 

mainly composed of a motor, a torque measurement shaft, a 

bearing test module, a flywheel, and a load motor. There are 

7 health conditions, normal (N), inner-race fault (IF) with 

three damage levels (IF1, IF2, and IF3), outer-race fault (OF) 

with two damage levels (OF1 and OF2), and compound 

fault (CF) containing IF and OF. 

Faulty bearings with real damage were acquired from an 

accelerated lifetime test. Vibration data was collected under 

four distinct working conditions, involving rotational 

frequency (Hz), load torque (Nm), and radial force (N), at a 

sampling frequency of 64 kHz. These conditions create four 

domains: P1, P2, P3, and P4, leading to four diagnosis cases, 

as outlined in Table 2. Each category in unseen working 

conditions comprises 2000 samples. 

 

4.1.3. Compared methods 

Some typical or up-to-date technologies were utilized as a 

set of compared methods to validated the effectiveness of 

the DiffPhysiNet framework with the idea of Physi-UNet 

and UCFilter and all the methods used the same 

preprocessing and network back-bone for a fair comparison. 

As shown in Table 3, M1-M6 series are competitive related 

methods, M1 means the Domain Adaption (DA) method 

based on empirical risk minimization (ERM) principle using 

multi-domain data based on the general cross-entropy loss 

of DA method. M2-M4 follow the same setting in (Jiao et al. 

2020; Huang et al. 2022; Han, Li, and Qian 2021) by adding 

a distance metric or distribution alignment as a loss term, 

such as MMD, JMMD, and CORAL. M5 (Li et al. 2020) is 

a start-of-the-art method DG that uses adversarial training 

with normalization strategies and a strategy of multi-case 

training and M6 (Chen et al. 2022)  is a competitive method 

for cross-domain diagnosis under unseen domain through 

triplet loss and data augmentation with Gaussian noise. 

 

4.2. Experimental results and analysis 

4.2.1. Generated signal and analysis 

To assess the effectiveness of the proposed diagnostic 

framework, we illustrate the generated signals in Figure 7. 

Notably, there were no fault samples with a 1000N load and 

an rpm of 40Hz in the training set, yet similar fault samples 

were generated. Thus, DiffPhysiNet can generate fault 

signals for unseen combinations of rpm and load.  

 

Figure 7. Generated signals comparison of time-domain on 

Set R1 of PU dataset and real signals (a)Inner ring fault (b) 

Outer ring fault (c) Cage fault. 

Table 1. Case1: Diagnostic cases of SDUST dataset. 

Diagnostic 

cases 
Seen Domain 

Unseen 

Domain 

T1 1500r/min,2000r/min,2500r/min 1000r/min 
T2 1000r/min,2000r/min,2500r/min 1500r/min 
T3 1000r/min,1500r/min,2500r/min 2000r/min 
T4 1000r/min,1500r/min,2000r/min 2500r/min 

 

Table 3. Related methods for comparation 

Methods Description 

M1 DA 

M2 DA with MMD 

M3 DA with JMMD 

M4 DA with CORAL 

M5 ADIG (Li et al. 2020) 
M6 IEDGNet (Chen et al. 2022) 

 

Table 2. Case2: Diagnostic cases of PU dataset. 

Domain 
Rotational 

frequency 
Load 

Diagnostic 

Cases 

Seen 

Domain 

Unseen 

Domain 

p1 25Hz 1000N R1 p2, p3, p4 p1 

p2 15Hz 400N R2 p1, p3, p4 p2 

p3 15Hz 1000N R3 p1, p2, p4 p3 

p4 25Hz 400N R4 p1, p2, p3 p4 
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Comparing the time-domain of the generated signals with 

real signals reveals a high degree of similarity, confirming 

the ability of the proposed method to generate signals under 

unseen working conditions that closely resemble real signals. 

This verifies the effectiveness and practicality of the 

generative model. On the frequency-spectrum comparison 

between the generated signals and the real signals is shown 

in Figure 8. The frequency spectrum of the generated signal 

and the real signal has a high degree of coincidence, 

especially in the low-frequency band where contains most 

damage features according to the vibration theory of bearing 

fault. 

 

Figure 8. Generated signals comparison of frequency-

domain on Set R1 of PU dataset and real signals (a)Inner 

ring fault (b) Outer ring fault (c) Cage fault. 

4.2.2. Experimental results and analysis 

Table 4. presents the diagnostic results for the proposed 

method and comparison methods in Case 1 (SDUST dataset) 

and Case 2 (PU dataset). Several conclusions can be drawn. 

Firstly, the basic DA method achieves notably lower 

average test accuracies of 76.46% and 80.63% in the two 

cases respectively, indicating interference among data 

distributions during training, affecting model generalization. 

Secondly, DA methods using MMD, JMMD, and CORAL 

exhibit improvements over basic ERM, with average 

accuracy gains of 1.57%, 12.06%, and 10.05% respectively 

in Case 1, and 4.04%, 5.27%, and 3.49% in Case 2. These 

methods aim to eliminate distributional discrepancies 

between source domains and learn domain-invariant 

representations. Finally, the proposed method achieves the 

best diagnostic performance in almost all DA cases, with the 

highest average accuracy of 94.15% and 93.27% in both 

experimental cases. Furthermore, it demonstrates superior 

stability compared to com-parison methods in most cases. 

Figure 9. illustrates the classification accuracy of different 

diagnostic cases for Case 1 and Case 2, aiding in the 

comparison of diagnostic results. 

 

Figure 9. Classification accuracy of the different diagnostic 

cases of case 1 and case 2. 

  
Table 4. Diagnostic accuracy (%) of Case 1 and Case2.  

 M1 M2 M3 M4 M5 M6 Proposed 

Case1 

T1 59.73±1.43 59.85±2.48 65.8±3.05 66.51±2.2 73.75±1.91 73.27±3.64 93.03±2.17 

T2 84.65±2.72 83.14±1.28 94.95±2.9 94.81±3.27 95.19±1.52 94.48±2.86 95.6±2.64 

T3 86.28±2.47 89.51±3.21 96.28±1.98 96.76±1.8 98.35±0.84 97.27±0.74 98.06±1.42 

T4 83.19±3.89 83.62±4.67 84.98±6.26 83.96±3.6 90.42±0.76 86.06±2.49 91.37±2.94 

Average 76.46±2.63 78.03±4.66 88.52±3.55 86.51±2.72 88.42±1.26 88.77±2.93 94.15±2.54 

Case 2 

R1 75.92±1.38 92.75±0.69 90.26±2.87 85.86±1.59 90.61±2.17 91.73±1.26 97.6±0.92 

R2 83.26±2.42 72.64±3.57 70.19±4.15 82.47±3.73 83.74±3.33 77.54±3.89 92.36±3.02 

R3 87.33±3.07 90.59±2.26 92.57±3.42 93.52±1.24 84.98±0.94 96.02±1.96 97.29±1.55 

R4 72.04±1.53 78.73±2.59 60.61±4.11 65.73±3.97 86.17±3.12 79.39±2.78 89.81±3.31 

Average 80.63±2.10 84.67±2.27 79.41±3.64 85.89±2.63 87.38±2.39 87.17±2.47 93.27±2.21 

 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 374



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

8 

4.2.3. Feature visualization and analysis 

Compared methods based on domain adaptation (DA) aim 

to learn domain-invariant features, while our diagnosis 

seeks to generate physic-embedded signals to cover unseen 

distributions. we employ feature visualization to validate 

these conclusions. To illustrate the distribution of fault 

features from seen and unseen domains corresponding to 

seen and unseen working conditions, we present 2-D 

features from the second layer of the fault classifier using T-

SNE (van der Maaten and Hinton 2008). For clarity, we plot 

the feature vectors of the SDUST dataset (Case 1) from four 

health conditions under case T1and four colors represent 

four domains, with gray points indicating features extracted 

from unseen domains, while other colors denote features 

from available source do-mains. 

The domain adaptation (DA) based method aims to extract 

generalized features that are consistent across different 

domains, including unseen domains. However, as illustrated 

in Figure 10, the features learned by methods M1-M3 fail to 

capture the generalized representation of the I02 fault due to 

significant domain discrepancies between seen and unseen 

working conditions. Although method M4 may learn more 

robust features compared to M1-M3, it struggles to cluster 

effectively in the seen domains of I02. 

 

Figure 10．Results of feature-dimension reduction via T-

SNE under unseen target working condition:M1, (b) M2, (c) 

M3, (d) M4, (e) Proposed. 

In contrast, the proposed DiffPhysiNet method, leveraging 

the feature embedding capability of Physi-UNet, can 

generate signals with more domain-invariant features. This 

leads to improved classifier training and reaffirms that the 

Physi-UNet structure enables the model to fit not only the 

source data distribution but also data from unseen working 

conditions. 

4.2.4. Parameter sensitivity analysis 

Adjustable parameters are involved in the construction and 

training of the proposed method and considering their 

impact on the model performance, parameter sensitivity 

analyses are performed on all case. 

 

Figure 11. Parameter sensitivity analysis (a) k value: the 

portion of selected nearest generated samples. (b) Diffusion 

steps t: the iteration steps of generation progress. 

𝑘 value represents the proportion of selected samples (𝑘 =
𝑛 ⁄ 𝑁), where 𝑁 is the total number of generated samples 

and n is the number of selected samples among them. These 

selected samples undergo the nearest distribution process in 

the K-means clustering algorithm, as depicted in Figure 5, 

where the Boundary Decision is determined by the k value. 

Figure 11(a) illustrates the diagnostic accuracy for each case 

under different k values ranging from 0.1 to 0.9. The graph 

indicates that when k is below 0.5, meaning less than half of 

the total generated samples are selected, the performance is 

inferior to the baseline M1 method. This could be attributed 

to the reduced generation capability resulting from a smaller 

set of selected samples, causing offsets in the feature 

distribution from the real distribution. Conversely, if k is too 

large, the model's performance declines, likely due to the 

utilization of too many substandard generated signals for 

diagnostic model training. Hence, selecting a value of k 

around 0.7 is recommended. 

𝑡 is the parameter of diffusion steps, the larger the value of 

diffusion steps the more detailed the signal generation 

process will be, as well as the larger the model training time 

and the computational resources it will consume. As shown 

in Figure 11 (b), it can be concluded that the performance of 

DiffPhysiNet framework becomes better and more stable as 

t is bigger than 1000 steps. Regarding the performance of 

M1 method as the baseline, the diffusion steps should not be 

less than 1000. As t increased from 1000 to 1500, the 
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performance of the model stabilizes and does not improve 

significantly. 

5. CONCLUSION 

In conclusion, we propose the DiffPhysiNet framework for 

diagnosing bearing faults under unseen working conditions 

for safety-critical equipment. Leveraging a generative 

diffusion model and working conditional encoding (WCE), 

this framework effectively embeds signal features, and the 

UCFilter method ensures signal quality using principles 

from K-means clustering. Experimental validation on real-

world bearing datasets demonstrates the superiority of 

Physi-UNet over existing approaches, particularly in 

diagnostic accuracy. Feature visualization confirms the 

framework's ability to capture generalized signal features 

under unknown conditions, highlighting the generative 

model's efficacy in signal generation. 
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