
Testing Topological Data Analysis for Condition Monitoring of Wind
Turbines

Simone Casolo1, Alexander Johannes Stasik2, Zhenyou Zhang3, and Signe Riemer-Sørensen4

1 Cognite AS, Oslo, Norway
simone.casolo@cognite.com

2, 4 Sintef Digital, Oslo, Norway
alexander.stasik@sintef.no

signe.riemer-sorensen@sintef.no

3 ANEO AS, Trondheim, Norway
zhenyou.zhang@aneo.com

ABSTRACT

We present an investigation of how topological data analysis
(TDA) can be applied to condition-based monitoring (CBM)
of wind turbines for energy generation.
TDA is a branch of data analysis focusing on extracting mean-
ingful information from complex datasets by analyzing their
structure in state space and computing their underlying topo-
logical features. By representing data in a high-dimensional
state space, TDA enables the identification of patterns, anoma-
lies, and trends in the data that may not be apparent through
traditional signal processing methods.
For this study, wind turbine data was acquired from a wind
park in Norway via standard vibration sensors at different lo-
cations of the turbine’s gearbox. Both the vibration acceler-
ation data and its frequency spectra were recorded at infre-
quent intervals for a few seconds at high frequency and fail-
ure events were labelled as either gear-tooth or ball-bearing
failures. The data processing and analysis are based on a
pipeline where the time series data is first split into intervals
and then transformed into multi-dimensional point clouds via
a time-delay embedding. The shape of the point cloud is an-
alyzed with topological methods such as persistent homol-
ogy to generate topology-based key health indicators based
on Betti numbers, information entropy and signal persistence.
Such indicators are tested for CBM and diagnosis (fault de-
tection) to identify faults in wind turbines and classify them
accordingly. Topological indicators are shown to be an in-
teresting alternative for failure identification and diagnosis of
operational failures in wind turbines.

Simone Casolo et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The global demand for renewable energy sources has seen a
significant rise in recent decades, with wind energy emerg-
ing as a prominent contributor to sustainable power genera-
tion (Q. Wang, Dong, Li, & Wang, 2022). Wind turbines,
pivotal in harnessing wind energy, operate under diverse en-
vironmental conditions and mechanical stresses, making their
maintenance and monitoring crucial for optimal performance
and longevity. Condition-based monitoring (CBM) has emerged
as a proactive approach to monitor the health of wind tur-
bines, aiming to detect faults and predict potential failures
before they escalate, thus minimizing downtime and mainte-
nance costs (Stetco et al., 2019).
Traditional CBM methods often rely on spectral signal pro-
cessing techniques to analyze sensor data for anomaly detec-
tion and fault diagnosis. Signal analysis techniques are com-
monly used for fault diagnosis and typically apply tools such
as Fourier or wavelet analysis of frequency signatures from
accumulated time series generated from sensors installed on
wind turbines. Where possible, machine learning techniques
are then used to identify early signatures of failure in the data
and alert engineers as soon as the equipment’s health starts
deteriorating. However, frequency-based methods often re-
quire accumulating signals for a significant time before pro-
cessing them successfully, making it an ideal method for ana-
lyzing failures after they occur. Online fault detection is much
more challenging, and together with inherent complexity and
non-linearity in wind turbine data, pose challenges for con-
ventional analytical approaches.
To address these challenges, alternative data analysis tech-
niques have gained attention for their ability to extract mean-
ingful insights from complex datasets. Among those, topo-
logical data analysis (TDA) has recently risen as a possible
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Figure 1. Overview of how the gearbox vibration data are
processed by means of topological data analysis.

alternative. TDA is a branch of data analysis that focuses on
revealing the the underlying structure of datasets by analyzing
their shape: particularly their topology in high-dimensional
state spaces. By representing data as multidimensional point
clouds and leveraging mathematical tools from algebraic topol-
ogy, TDA enables the identification of intricate patterns, anoma-
lies, and trends that may not be discernible through traditional
signal processing methods alone (see Fig.1).

In this study, we explore how TDA techniques can be em-
ployed to analyze vibration data collected from wind turbines
at a wind park. Vibration sensors placed strategically in dif-
ferent locations of the turbine’s gearbox provide high-frequency
data capturing both vibration acceleration and frequency spec-
tra.By employing a systematic data pipeline, including time-
series segmentation and time-delay embedding, we transform
the raw sensor data into a multidimensional point cloud and
then, process it via topological analysis.
The primary objective of this research is to evaluate how topo-
logical indicators derived from TDA, such as Betti numbers,
information entropy, and signal persistence can be used or
complement more traditional spectral analysis as key health
indicators for CBM and fault diagnosis in wind turbines.

2. DATA DESCRIPTION

For this analysis, we use vibration data collected from two
wind turbine gearboxes from a wind park located in Norway.
The data sets are proprietary, owned by the wind park op-
erator ANEO (www.aneo.no) and this work is the first pub-
licly available analysis of the data. The data was collected
using accelerometers, located at various positions in the gear-
box. For the analysis, we focused on sensors that were phys-
ically closest to the known failure positions and most corre-
lated with the time of failure of the gearbox. The consid-
ered sensors are located at the gearbox high-speed stage front
(GbxHssFr), at the gearbox intermediate stage (GbxIss), at
the gearbox planetary stage (Gbx1Ps), and at the non-drive
end of the generator (GnNDe). The left panel in Figure 2

show a 0.05 s example of vibrations recorded from GbxHssFr.
The vibration / acceleration data were sampled at 25.6 kHz
for 10 seconds at infrequent intervals. The two cases have re-
spectively 23 and 21 samples of 10 s length with a sampling
rate of 25.6 kHz. The data is collected at infrequent intervals
over approximately a year until the time when failures hap-
pened, and the equipment was stopped for maintenance. In
the first case, data were acquired from 2022-10-28 to 2023-
10-11 and data ended with a ball bearing failure (BBF) at the
non-drive end of the generator. In the second case, data was
recorded from 2022-05-24 to 2023-06-21 ended with a gear
tooth failure (GTF) at the planetary stage section of the gear-
box.

3. METHODS

In this section, we delineate the methodologies employed for
analyzing complex data structures, focusing particularly on
spectral analysis and topological data analysis (TDA). Spec-
tral analysis, rooted in the principles of linear algebra and
signal processing, extracts valuable insights from data by de-
composing it into its constituent frequencies. Conversely,
topological data analysis, drawing from the field of algebraic
topology, examines the shape and connectivity of data through
the lens of persistent homology, providing a holistic under-
standing of its underlying structure.
Both spectral analysis and TDA offer distinct yet complemen-
tary approaches to understanding complex datasets. While
spectral analysis emphasizes frequency-based decomposition,
TDA highlights the intrinsic topological features of the data.
By comparing and contrasting these methodologies, we aim
to elucidate their respective strengths, limitations, and appli-
cability in various analytical contexts. This comparative anal-
ysis serves as a foundation for our subsequent exploration and
interpretation of results, contributing to a comprehensive un-
derstanding of the dataset under investigation.

3.1. Spectral analysis

Spectral analysis, a fundamental technique in signal process-
ing and data analysis, provides a powerful framework for de-
composing complex data. Rooted in the principles of Fourier
series, spectral analysis offers invaluable insights into the un-
derlying structure and dynamics of various data types across
diverse domains, including engineering, physics, biology, and
finance.
At its core, spectral analysis aims to characterize the fre-
quency content of a signal or dataset. By representing data
in the frequency domain, analysts can identify dominant pat-
terns, periodicities, and trends that may not be readily ap-
parent in the time or spatial domain. This decomposition fa-
cilitates the extraction of meaningful information, enabling
researchers to discern underlying patterns, detect anomalies,
and make informed predictions.
Spectral analysis is a common tool for condition monitoring
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in wind turbines (Z. Zhang, Verma, & Kusiak, 2012; Xiao et
al., 2020). Vibration data are typically collected from sensors
placed in correspondence to moving elements in turbine gen-
erators and gearboxes, subject to wear and mechanical failure.
Data are analyzed to identify anomalies and expose drift and
changes in the data that can be associated with a degradation
of the system health and, inturn, lead to its mechanical failure
(Tchakoua et al., 2014; Q. Wang et al., 2022; Stetco et al.,
2019).
One of the key advantages of spectral analysis lies in its abil-
ity to unveil hidden relationships and structures within data.
Through techniques such as Fourier transform, wavelet anal-
ysis, and singular value decomposition (SVD), analysts can
disentangle complex signals into simpler components, each
representing a distinct frequency or mode of variation. This
spectral decomposition forms the basis for a wide range of ap-
plications, including signal filtering, noise reduction, feature
extraction, and system identification.

3.2. Topological data analysis

Topological data analysis allows the interpretation of the spa-
tial arrangement of data. This approach has been developed
in the last decade and successfully applied to the analysis of
data in several fields of engineering, fluid mechanics (Casolo,
2022), physics and biology (Wasserman, 2018). Here we will
present a brief introduction to the topic: for a full exposition
of this approach, we recommend the excellent articles from
Perea and Harer (Perea & Harer, 2015), Chazal et al. (Chazal
& Michel, 2021) and Smith et al. (Smith, Dłotko, & Zavala,
2021).
A common assumption in data analysis is the hypothesis that
there exists a suitable space of parameters where data happen
to form a manifold. In this case, it would be fair to assume
that the shape of such a manifold would contain information
about the data. TDA is one of the tools that can be used to
interpret such information. Univariate time series of a scalar
signal is not immediately suitable to be analysed with TDA.
The signal is therefore embedded with a time-delay approach
to form a high-dimensional space via a procedure known as
Takens embedding(Takens, 1981). This method embeds a
time signal into a vector without loss of information, by defin-
ing two parameters: the time-delay τ and the embedding di-
mension d. Then, the time series x(t) is sampled in d-points,
each separated by a time τ . The embedded d-dimensional
vector is then built as:

x(t) = {x(t), x(t− τ), . . . , x(t− dτ)} (1)

As the time series evolves in time, it can be sampled repeat-
edly to build a series of vectors, which are accumulated to
form a point cloud in d-dimensions. This cloud samples the
manifold on which the data lays.
Once the data are represented in the d-dimensional space of
the embedding, this can be analyzed by using algorithms de-

veloped in algebraic topology. To build the manifold, it would
be required to connect each vector, i.e. point in the cloud
within a given radius around each point, to form a network
or a cell complex. This process is performed by connecting
points lying within a given radius via the creation of Vietoris-
Rips complexes: a simplicial (cell) complex representing the
connectivity between data points in a dataset. To encode the
complexity of the point cloud, we then compute a nested se-
ries of complexes that are formed at every point increasing
the value of the radius in a process known as filtration. The
construction of the complex involves considering all possible
subsets of data points and connecting those that are within a
specified distance threshold. Overall, the point cloud gener-
ated from the time series is a sampling of the shape of the
data, and the filtration process generates several simplicial
complexes which are the computational descriptions of the
shape of the data. As the filtration parameter increases, the
Vietoris-Rips complex captures increasingly complex topo-
logical features, ranging from individual points to higher–
dimensional structures such as loops and voids. Typically,
these features are unique to the data manifold (Attali, Lieu-
tier, & Salinas, 2011) and are the topological structures we
consider when analyzing the data.
The presence of loops, voids, etc. is encoded in the concept of
homology. Persistent homology analyze the development of
data sets by considering the evolution of topological features
across different scales. It quantifies the persistence of these
features as they emerge, merge, or disappear, providing a ro-
bust framework for capturing and characterizing the essential
topological structure of complex datasets. Each structure then
has a birth and a death value at a given radius of the filtration
process, which can be recorded in a diagram known as a per-
sistence diagram, unique for the analyzed shape. Each point
in the diagram corresponds to a topological feature per each
dimension (connected components in dimension 0, loops in
dimension 1, voids in dimension 2, etc.) with its coordinates
indicating the scale at which the feature is born and dies (see
Figure 2 for an example of a persistence diagram). The per-
sistence of a feature is measured as the difference between its
death (d) and birth (b) scales. Naturally, persistence diagrams
are non-empty only above the diagonal as the death of a fea-
ture would occur only after its birth, and the more ’persistent’
a feature is, the further this would lay from the diagonal line.
By analyzing persistence diagrams, it is possible to identify
persistent features that are robust across multiple scales and
distinguish them from transient noise or artefacts in the data.
Topological indicators in each homology dimension Hk can
be extracted from persistence diagrams and used to analyze
data.
While TDA can be applied to uncover the shape of the data
manifold for a signal of an arbitrarily long time, it can also
be applied to a sequence of short time windows, sliding for-
ward in time and partially overlapping (Perea & Harer, 2015).
This sliding windows approach can be used to uncover the lo-
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cal structure of data and their evolution and it has been used
successfully to study the dynamics of mechanical systems.

3.3. Topology of vibration signals

Topological methods are expected to work particularly well
for analyzing periodic time signals and their changes. Math-
ematically, it can be shown that periodic signals which can
be approximated with a trigonometric function of a given
frequency, can be embedded into a point cloud of elliptical
shape, hence in a loop that should be detected by a high per-
sistence signal of dimension 1 (H1) (Perea & Harer, 2015).
When the signal is instead composed of combinations of more
frequencies these give rise to more complex manifolds such
as tori and higher dimensional structures (Perea, 2016).
In the case of oscillating systems, according to the Arnol’d-
Liouville theorem in dynamical system theory, systems of n
harmonic oscillators give rise to trajectories on a n-dimensional
torus. This phenomenon emerges due to the conservation
of action variables, which characterize the system’s motion
in phase space. In a system of harmonic oscillators, each
oscillator contributes a set of action-angle variables, repre-
senting the oscillation’s amplitude and phase in each dimen-
sion. These variables remain constant over time, preserv-
ing the system’s dynamics. As a consequence, trajectories in
phase space form closed loops, tracing out toroidal surfaces
(Arnol’d, 1989). This behaviour stems from the periodicity
of harmonic motion, enabling the system’s state to return to
its initial configuration after completing a cycle. The toroidal
topology of these trajectories reflects the periodicity and con-
servation of action variables, illustrating a fundamental prin-
ciple of dynamical systems theory.
When a vibrating mechanical system such as the gearbox of a
wind turbine oscillates, it is reasonable to expect, accounting
for deviation and noise, a behaviour similar to that of a har-
monic oscillator, hence a trajectory in phase space spanning
a manifold similar to a torus. In this case, it would be reason-
able to expect some homology signatures that should be visi-
ble from the persistence diagrams, making persistent homol-
ogy a good candidate method for characterizing the dynamics
of vibrations at the gearbox and, hopefully, spotting the ap-
pearance and evolution of abnormal behaviour from sensors’
time series.

3.4. Analysis strategy

In this work, we have chunks of high-frequency data sparsely
collected, each a few weeks or months apart. Every chunk of
data is sampled with 25.6 kHz for a period of 10 s, allowing
for spectral, spectral-temporal or topological data analysis.
We assume that any changes happen on time scales of days
or weeks, and hence the data is stationary over each of those
10 s segments. Therefore, the main strategy of our analysis
focuses on finding trends between time segments as we get
closer to the failure time.

The key challenge in this work is the lack of ground truth,
as we do not know the onset of the damage that eventually
led to the failure of the gearbox. Therefore, we use the early
stages of data as a baseline, assuming that the damage de-
veloped later. In other words, we are looking for system-
atic deviations from the early state which is assumed to be
healthy. Topological data analysis was performed with the
Giotto-TDA code suite (Pérez, Hauke, Lupo, Caorsi, & Das-
satti, 2021). Time series from vibration sensors were embed-
ded using Takens embedding with the optimal time delay and
embedding dimension chosen by the built-in standard heuris-
tics based on mutual information (Fraser & Swinney, 1986;
Abarbanel, Kennel, & Brown, 1992). Persistence diagrams
D were then compiled from the Vietoris-Rips complexes ob-
tained from the filtration and used to compute the following
topological indicators:
The maximum persistence, defined as the infinity norm for
each homology dimension:

PHk
∞ (DHk

) = max
{b,d}∈D

|d− b| (2)

This is a useful shape indicator as noise gives rise to points in
D with a short lifetime, while relevant features of the points
cloud (e.g. loops) are expected to have high persistence.
The normalized persistence entropy is another measure of
complexity (Atienza, Gonzalez-Diaz, & Rucco, 2019; Atienza,
Gonzalez-Dı́az, & Soriano-Trigueros, 2020), EHk

(D), expressed
as a measure of the distribution of points along the diagram
based on Shannon’s entropy formula:

EHk
(D) = − 1

log2 S(D)

∑

{b,d}∈DHk

|d− b|
S(D)

log2

( |d− b|
S(D)

)

where the amplitude S(DHk
) for a given dimension is defined

as:
S(DHk

) =
∑

{b,d}∈D

|d− b| (3)

Betti curves are another informative topological indicator,
which measures the amount of k-dimensional topological fea-
tures i.e. the Betti number, βk (Hatcher, 2002), at each value
of the filtration parameter. In practice, these ”count” the num-
ber of k-dimensional holes of a space: β0 represents con-
nected components, β1 circles, β2 voids, etc. As an exam-
ple, for a two-dimensional circle the set of Betti numbers
{β0, β1, β2} are {1, 1, 0}, for a filled disk {1, 0, 0}, a hollow
sphere {1, 0, 1}, for a filled ball {1, 0, 0}, for a torus {1, 2, 1},
etc.
Other indicators are the f -family of indicators defined here,
as proposed by Adcock et al. (Adcock, Carlsson, & Carls-
son, 2016) and used in TDA for the anomaly detection in ro-
tating equipment for manufacturing (Yesilli, Khasawneh, &
Otto, 2022b; Khasawneh & Munch, 2016) as they combine
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Figure 2. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor at normal
operation state. Note the toroidal point cloud, resulting from the embedding of the periodic time series. The loop structure
is revealed in the persistence diagram as a point (yellow) far from the diagonal, where points created by signal noise tend to
accumulate.

Figure 3. Fourier transform (normalised to counts) of the sig-
nal recorded on 2023-10-28 for GnNDe-BBF and GbxHssFr-
BBF. The vertical lines indicate the frequency intervals
for which the most dominating peaks are investigated for
GbxHssFr.

the highest persistence with amplitude information:

f1 =
∑

i bi · (di − bi)

f2 =
∑

i(dmax − di)− (di − bi)

f3 =
∑

i b
2
i · (di − bi)4

f4 =
∑

i(dmax − di)2 − (di − bi)4

(4)

4. DATA ANALYSIS

No data cleaning or pre-processing has been performed to the
signal prior to the analysis described in Section 3, hereafter
addressed as ’raw data’.

4.1. Bearing Failure

The bearing failure was reported at the non-drive end of the
generator, corresponding to the location of the sensor labelled
as ”GnNDe” and the signal was recorded sporadically be-
tween October 2022 and the failure on November 11 2023.
Each time series records acceleration data for the sensor and
the corresponding frequency spectrum is computed from the

Figure 4. Peak height (left axis, circles) and width (right axis,
crosses) for three frequency signatures (most dominant peak
in the frequency ranges [1000, 1800], [1800, 2300], [2300,
3000] Hz) for GbxHssFr in the bearing failure case.

raw signal through a Fast Fourier Transform (FFT) approxi-
mation. Figure 3 shows the spectrum for the signal recorded
at the GnNDe (blue) and at the earliest available timestamp,
28-10-2023. We assume this to correspond to a state of ”nor-
mal operations”.
Topological analysis shows the point cloud corresponding with
GnNDe is not describing a torus, but rather a semi-uniform
ball, indicating non-periodic or very noisy behaviour. As a
consequence, the H0 persistence can only be interpreted as a
measure of how much clustered or diffused the data are in the
parameters space, while H1 and higher-dimensional homol-
ogy signals are expected to be low and not significant. Indeed,
the only noticeable trend in the topological indicators is a de-
crease in H0 persistence and an increase in entropy, typically
as a consequence of a progressively less structured and more
noisy signal. At a closer look, other sensor signals seem more
suitable for analysis. In particular, the intermediate and high-
speed stage sensors (GbxIss and GbxHss, respectively) show
a more periodic and regular behaviour. Indeed the high-speed
front (GbxHssFr) sensor shows a clear oscillating signal and
a frequency spectrum dominated by a peak at around 1400Hz
and its multiples (orange spectrum in Figure 4). The embed-
ded signal clearly shows a toroidal shape, a ”filled” torus con-
sisting of one main loop induced by the main frequency com-
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Figure 5. Topological indicators computed for the signal
GbxHssFr in the bearing failure case. Highlighted the most
significant anomaly, dated 2023-10-08.

ponent, and the direction orthogonal to the loop blown up by
the noise. The corresponding persistence diagram then shows
a high persistence point for H0 and one at H1 corresponding
to the loop and proportional to its size.
The analysis of the evolution of the GbxHssFr signal is not
trivial. Figure 3 shows the time development of the most
dominant peak in each of the three frequency bands shown
in Figure 4. We found that the frequencies do not shift sig-
nificantly until the time of the failure (not shown). The cor-
responding peak heights and widths show a larger spread, es-
pecially at the lowest frequency. We also measure the evo-
lution by computing the mutual distance between the vectors
containing Fourier coefficients for each time series. This dis-
tance becomes more evident between the signal in the early
timestamps (i.e. normal operations) and signals in a few spe-
cific days close to the failure, in particular at 2023-10-08 and
2023-10-10, one and three days from the failure, especially
for the components included from 0 to 1800Hz.
We observe a similar behaviour in the skewness and kurtosis
of the raw signal, which show a slow decreasing trend, with
a very high spike in the latter at the timestamp 08-10-2023, 3

Figure 6. Topological indicators obtained by averaging the
results of several sliding windows of 5ms, computed for each
of the chunks for GbxHssFr in the bearing failure case. The
most significant anomaly is dated 2023-10-08.

days from the point of failure, which was not evident from the
spectra alone. The monitoring of kurtosis in the early detec-
tion of bearing failures is well-known in the literature and it
is likely to be a good indicator in this case as well (H. Zhang,
Chen, Du, & Yan, 2016; Chauhan et al., 2024; Sawalhi &
Randall, 2004).

The development of TDA indicators over time are shown
in Figure 5 for GbxHssFr. Indeed most indicators show a
sharp change around 08-10-2023, particularly the indicators
that include the maximum persistence in dimension 1, e.g.
PH1∞ , f2(H1) and f4(H1). When applying the sliding win-
dows approach of TDA and focusing on the short-term dy-
namics of the signal, the topological indicators are computed
for short time windows (5ms) across one signal and then av-
eraged (Figure 6). This deep dive allows us to expose the
dynamics of the signal, how the topology of the point cloud
changes on short timescales and, in turn, whether the signal
frequencies are finely modulated. The sliding window anal-
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Figure 7. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor recorded
at 2023-10-08. Comparing the point and the persistence diagram with Figure 2 the loop structure of the point cloud has
disappeared, together with the high persistence H1 point in the diagram.

ysis is in perfect agreement with the Fourier analysis and the
kurtosis signal, where a sharp change is visible on 2023-10-
08. The change in the TDA results can be ascribed to a change
in the average frequency of the signal, leading to a shrinkage
of the toroidal point cloud to the point of almost closing the
’hole’ of the torus (see Figure 7). This leads to a temporar-
ily abrupt decrease in the persistence of the H1 feature, and
an increase in its entropy (entropy scales inversely with the
smoothness of the manifold). There is also an apparent am-
plitude modulation of the raw signal which is hard to capture
with TDA, but has been linked before with bearing failures in
wind turbines (Jiang, Zhang, Xiang, Yu, & Xu, 2023).

4.2. Gear-tooth failure

A gear tooth damage event was reported on a different wind
turbine in the same wind park in July 2023. The signal recorded
for the sensor located closest to the failure, Gbx1Ps, has a
frequency spectrum fairly similar to that of the high-speed
sensor, GbxHssFr: dominated by few isolated frequency con-
tributions. The only significant feature we could identify in
the data is a drift in the peak width, similar to the case of the
bearing fault, starting around May 2023 (see Figure 8).
Interestingly, when integrating the spectrum in the frequency

range recommended by standard ISO 10816-3 (hereafter de-
noted Gbx1Ps.ECU2 where the signal is demodulated between
500-2kHz with the RMS broadband value between 1-150Hz).
it appears more evident that a sudden jump in the signal of
about 50% occurs between April and May 2023, as shown in
Figure 8.
Following the same process as for the bearing fault, we fo-
cus on the high-speed gear sensor GbxHssFr, which shows a
more regular oscillation pattern (see Figure 9). We apply both
the Fourier and TDA analysis to uncover any possible failure
signature in the data. Analogously to the bearing fault case,
skewness and kurtosis show a drop, associated with an in-
crease in the signal’s median, starting from around May 2023.
The topology of the data is again that of a ”filled” torus (Fig-

ure 9), which is topologically equivalent (homotopy equiva-
lent) to a circle in 2 dimensions. This means that it should be
possible to reduce the dimensionality of the Takens embed-

Figure 8. Selection of health indicators for the gear-tooth
failure from sensor Gbx1Ps. FFT distance is the geomet-
ric distance between the average of the first three spectra in
the dataset and each individual spectrum in the range [1800,
3000] Hz. Gbx1Ps.ECU2 is the indicator from standard ISO
10816-3. Peak 2 width and height are the characteristics of
the dominating peak in the range [1800, 2300] Hz. Kurtosis
is the kurtosis of the raw vibrations. All quantities have been
normalised to their maximum value in the time interval.

ding to 2, without loss of information. We, therefore, focused
on this reduced model for our analysis. The sliding windows
processing for the GbxHssFr signal reveals a change in most
of the topological indicators (PH0,1

∞ , EH0,1 , SH0,1), etc.) at
the same timestamp in April, and again more sharply only 2
days before the failure in July 2023, as visible from Figure
10. Close to the failure there is an increase in the persistence
and a decrease in the entropy, signalling a change in the size
of the loop when averaged across the 10 s of the signal at a
given timestamp, but not in its shape as the Betti number in-
dicator for dimension 1 remains stable.
In TDA, periodic functions get embedded in loops of a size
proportional to the size of the sliding window (Perea & Harer,
2015), therefore, a change in the size of the torus loop should
correspond to changes in the period of the gearbox vibrations
or some kind of frequency modulation, close to the failure
event. By looking at spectrograms for the GbxHssFr signal
(Figure 11) it is possible to recover some of the dynamics of
the peaks in the spectrum. On one hand, at timestamps far
from the failure, the spectra shift only slightly across the 10 s
of the recorded signal, and mostly the peaks tend to change
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Figure 9. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor in the
gear-tooth failure case. Note the toroidal point cloud, resulting from the embedding of the periodic time series.

width with a timescale of a few seconds. On the other hand,
close to the failure it appears that the two main peaks at 1350Hz
and 2700Hz ”jump” as their relative height tends to oscillate
on a 3-4 Hz timescale, i.e. about 40 times across the measure-
ment duration in a jittering fashion. This frequency modula-
tion should also be noticeable in the TDA results, as the size
of the loop in the point cloud should change as well. Indeed,
this becomes evident when looking at the maximum persis-
tence in dimension 1 (PH1∞ ) and in particular to the radius of
gyration (Rgyration) for the point cloud, defined as:

Rgyration =

√√√√ 1

N

N∑

i=1

(ri − rCM)2 (5)

where N is the total number of points in the point cloud, ri
represents the position vector of the i-th point, rCM denotes
the position vector of the centre of mass of the point cloud.
The gyration radii for the data farther and closest in time to

the gear tooth failure are shown in Figure 12 and manifests
as a rapid oscillation in the gyration radius. This rapid mod-
ulation could indeed be a signature of imminent equipment
failure. Interestingly, we notice this kind of modulation is
common in other engineering disciplines, such as metal turn-
ing and machining, where is a signature of ”chattering”, a
pathological resonance in the turning process (W.-K. Wang,
Wan, Zhang, & Yang, 2022). Unsurprisingly, TDA has been
successfully applied to chatter detection and it was shown
to be useful in the early detection and the machine learning
identification of such anomalies is several industrial settings
(Khasawneh, Munch, & Perea, 2018; Yesilli et al., 2022b;
Khasawneh & Munch, 2016; Yesilli, Khasawneh, & Otto,
2022a).

5. CONCLUSION

In this study, we have explored the application of topologi-
cal data analysis (TDA) in conjunction with spectral analysis
for condition-based monitoring (CBM) of wind turbines. Our
investigation focused on analyzing vibration data aiming to
detect and diagnose potential faults in gearbox components.

Through TDA, we transformed raw vibration data into multi-
dimensional point clouds and leveraged topological indica-
tors such as Betti numbers, persistence diagrams, and en-
tropy to characterize the underlying structure of the data. We
compared TDA with traditional spectral analysis methods and
observed that TDA offers complementary insights, particu-
larly in identifying complex patterns and anomalies that may
not be apparent through conventional signal processing tech-
niques alone.
Our analysis revealed promising results in using TDA for
fault detection and diagnosis. In the case of bearing fail-
ure, we observed significant changes in topological indica-
tors, particularly in persistence and entropy, preceding the
failure event. Similarly, for gear-tooth failure, TDA high-
lighted distinct changes in the structure of the point cloud,
indicating the onset of damage. Furthermore, by integrating
spectral analysis with TDA, we were able to uncover addi-
tional dynamics in the data, such as frequency modulation,
which could serve as early indicators of equipment deteri-
oration. These findings suggest the potential of TDA as a
valuable tool for CBM in wind turbines, offering a comple-
mentary approach to monitoring and diagnosing faults and
to proactive maintenance strategies in renewable energy gen-
eration. While TDA is only slightly more computationally
demanding than the more traditional spectral analysis meth-
ods, it offers additional visual support by providing a mani-
fold representing the data. Changes in the manifold of data in
phase space correspond to changes in the vibration dynamics
of the system, as is well known from dynamical system the-
ory and therefore changes in the system’s health may be more
easily inferred by analyzing the shape of the data in addition
to its spectral features.
Future research could explore the integration of TDA with
machine learning techniques for more robust fault detection
algorithms. Additionally, incorporating real-time monitoring
capabilities could enhance the practical applicability of TDA
in industrial settings.
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Figure 10. Topological indicators obtained by averaging the
results of several sliding windows of 5ms, computed for each
of the signal GbxHssFr in the gear tooth failure case.
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NOMENCLATURE

Note that this section is optional.

TDA Topological Data Analysis
CBM Condition Based Monitoring
Gbx Gearbox
SV D Singular value decomposition
BBF Ball bearing failure
GTF Gear Tooth Failure
RMS Root-Mean-Square

Figure 11. Spectrogram of first and second to last data point
before failure.

Figure 12. Radius of gyration from GbxHssFr vibration data
recorded at the first data point (blue) and the last data point
(red) before the failure event.
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