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ABSTRACT 

Track quality geometry measurements are crucial for the 

railways’ timely maintenance. Regular measurements 

prevent train delays, passenger discomfort and incidents. 

However, current fault diagnosis or parameter deviation 

relies on simple threshold comparison of multiple laser 

scanners, linear variable differential transformer (LVDT) and 

camera measurements. Data threshold exceedances enact 

maintenance actions automatically. However, issues such as 

measurement error, and sensor failure can result in false 

positives. Broad localisation resolution prevents trending/ 

inferencing by comparison with healthy data baseline at the 

same position over periodic inspections.  

False alarms can result in costly ineffective interventions, are 

hazardous and impact the network availability.   

This paper proposes a novel methodology based on 

convolutional neural network (CNN) technique for detecting 

and classifying track geometry fault severity automatically. 

The proposed methodology comprises an automatic flow of 

data for quality assessment whereby outliers, missing values 

and misalignment are detected, restored and where 

appropriate curated. Improved, “clean” datasets were then 

analysed using a pretrained CNN model. The method was 

compared with a suite of machine learning algorithms for 

diagnosis including k-nearest neighbour, support vector 

machines (SVM), and random forest (RF).  

The analysis results of a real track geometry dataset showed 

that track quality parameters including twist, cant, gauge, and 

alignment could be effectively diagnosed with an accuracy 

rate of 97.80% (CNN model). This result represents a 

remarkable improvement of 38% in comparison with the 

traditional threshold-based diagnosis. The benefits of this 

research are not only associated with maintenance 

intervention cost savings. It also helps prevent unnecessary 

train speed restrictions arising from misdiagnosis.   

1. BACKGROUND  

Rail transportation’s convenience, punctuality and cost-

effectiveness have made it the preferred mode for medium 

distance travelers and freight (Ghofrani et al., 2018; Wang et 

al., 2018)  Train services as well as the total mileage of track 

is increasing, which poses a considerable challenge for the 

effective maintenance of railways infrastructure (Durazo-

Cardenas et al., 2018). Degraded rail tracks can cause bumps 

and swaying when trains pass at high speed and can even 

cause derailments, putting at risk the safety of passengers. In 

the event of a failure, delays to the network can also cause 

significant economic losses (Sasidharan et al., 2020). 

Wear and degradation are inevitable, and the railways have 

implemented safe, tolerance limits for track quality 

parameters (Railtrack PLC, 1998). Today, tracks are 

regularly inspected and repaired by dedicated infrastructure 

maintenance teams. This usually implies a combination of 

sophisticated track quality inspection trains and on-foot 

crews that validate and repair the defects flagged by the 

inspection trains. However, this requires experienced 

technicians working in hazardous environments, while 

reducing the availability of the network. Clearly, false alarms 

raised by the inspection trains contribute to further downtime 

and costs.  

1.1. Measurements and data parameters 

The New Measurement Train is an automatic inspection train 

that is currently the primary method of collecting track 

geometry data on the British Railways (New Measurement 

Train (NMT), 2024) . It uses multiple laser scanners, linear 

variable differential transformer (LVDT), gyroscopes and 
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accelerometers and cameras Data from thirteen-time domain 

track parameters are acquired, plus additional imagery 

systems, accumulating terabytes of data. The NMT can 

measure track condition at 125mph and cover up to 115,000 

miles in a year. 

Cross-level, Gauge and Curvature are the essential features 

of a track alignment, transverse and vertical deviation. Cross-

level is defined as the vertical height difference between the 

tops of the two tracks, while the distance between the two set 

of rails is known as the Gauge. Curvature is the radius of the 

arc of the rail, which describes the degree of curvature of the 

rail. For straight rails, the desired cross-level value 

approaches zero. while for curved rails, this closely matches 

the design value.  

The Twist parameter combines deviations in vertical, and 

longitudinal dimensions and is typically measured at 3m 

intervals (Twist3m). The Cant parameter describes the 

difference between the track cross-level and the design cross-

level value on curved track. 

 

Figure 1 rail track quality parameters. Adapted from 

D’Angelo et al., (2018). 

 

Top and Alignment (AL) account for the deviation between 

the actual track and the optimal planned path, where top is 

the vertical distance deviation of the top surface. AL refers to 

the horizontal distance deviation (Railtrack PLC, 1998). On 

the other hand, Dip is a measure of the depression of the track. 

The standard deviation of the measured data parameters is 

compared to their threshold values for each 1/8 of mile. 

Exceedances are logged during the train inspection and 

corrective action notice are issued.  Based on the severity of 

the faults detected and the nominal speed of the line, the 

health of the track section will be classified as Good, 

Satisfactory, Poor, Very Poor, and Super Red. Speed 

restrictions are then issued considering the parameter 

criticality, with 20 miles per hour being the lowest speed 

restriction, before track blockage. Network Rail 

standards(NR/L2/TRK/001/MOD11, 2015 also prescribe the 

actions to be taken upon threshold exceedances for each 

parameter, with these ranging from:  

1. Block the Line 

2. Correct before 36h. 

3. Inspect in 72h and correct before 14 to 28 days. 

4. Correct before 7 to 14 days. 

5. Correct before 14 to 28 days. 

6. Add it to the maintenance plan. 

1.2. Dataset description 

The data used in this this study comprises time series 

measurement data of the thirteen track parameters described 

above covering the Southampton-Waterloo line in both 

directions over a period of one year. This is considered a 

major line serving many commuter areas including 

southwestern suburbs of London and the conurbations based 

around Southampton. Datasets typically comprise CSV 

acquisition and PDF maintenance team activity logs, and 

track defect reports. Network Rail reports track quality 

assessments every 1/8 of mile, with up to 1000 measurements 

for each parameter acquired. Datasets typically exceed 2 GB.  

1.3. Machine learning and related work 

Machine learning is often used to analyze large amounts of 

data and identify connections, offering exceptional potential 

for anomaly detection analysis (Popov et al., 2022).  Recent 

studies report on machine vision and SVM used to analyze 

images for track defect detection (Aydin et al., 2021). 

However, the settings could be significantly costly as it 

requires high specification tools (cameras, effective fast 

transmission systems, and efficient storage). Moreover, the 

large number of images generated bring real time processing 

challenges hence, affecting on time performance.  

Based on time series data, reported accuracy of some 

traditional machine learning algorithms appears to be 

relatively low. Considering the disruption, cost and effort 

involved in railways repairs, higher accuracy is essential. For 

example, results of SVM algorithm used to detect combined 

track degradation from car body vibrations reported an 

accuracy of 80% (Tsunashima, 2019).  Lasisi & Attoh-Okine, 

(2018),used Principal component analysis (PCA) to combine 

track geometry parameters into a lower-dimensional form 

and then used SVM, Linear discriminant analysis (LDA), and 

Random Forest (RF) to detect orbital faults with an accuracy 

of 92%. However, the true positive rate (precision) is only 

about 66%, potentially leading to many false alarms. 

Several studies have compared the performance of machine 

learning methods. Sresakoolchai & Kaewunruen, (2019) used 

a range of supervised and unsupervised machine learning 

models to analyse track geometry data and sentence faults. 

The results showed that the non-linear models fitted 

significantly better, with deep neural network (DNN) having 

the highest accuracy at 94.3%, followed by convolution 

neural network (CNN) with 93.8%. The linear models all had 
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accuracy rates below 50%, with SVM being the poorest at 

20%. The results showed that the relationship between 

features and labels is highly non-linear. 

In this context, we propose and effective method to 

automatically detect and classify track defect using data 

driven approaches. The next section introduces the 

methodology. 

2. METHODOLOGY 

The five-step approach employed in this investigation is 

illustrated in Error! Reference source not found.. The 

initial data acquisition step is associated with the acquisition 

of data. Two different types of data were gathered for the 

analysis. The first datasets comprise of time series signals 

representing key track quality parameter measurements such 

as, the location, time, the CANT, the TOP, the gauge, the AL, 

the Cross-level and the Curvature. The second dataset 

represents a set of pdf files containing a threshold-based 

detection report and human based investigation maintenance 

logs. These files are useful to annotate the track fault 

observed in the time series data. 

  

 

Figure 2 Flow chart of methodology steps. 

 

Step two focuses on the enhancement of individual datasets 

quality. This was critical step given the issues often 

encountered with time series data. These datasets typically 

emanate from a variety of instrumentation sources and are 

prone to a myriad of consistency issues, including 

measurement discrepancies caused by instrument 

malfunctions or user errors. These issues manifest as missing 

data points, misaligned signals, and a significant presence of 

noise, each of which can distort the true signal and lead to 

inaccurate analyses if not properly addressed. To address the 

absence of data, a localized regression method is 

implemented. This approach leverages nearby data points to 

estimate and impute the missing values, assuming that these 

points observe a similar behavioral pattern. Such assumption 

is justified given that time series data often exhibits temporal 

correlation. The efficacy of the imputation process is vital, as 

it directly affects subsequent analyses. In addition to 

imputation, the dataset processing phase employs a 

combination of Dynamic Time Warping (DTW) and Cross 

Correlation techniques to detect and correct misalignments in 

the signals. DTW is an algorithm that allows for elastic 

transformation of time series, enabling the identification of 

similarities between data sequences that do not align 

perfectly in time. When used in conjunction with Cross 

Correlation, it becomes a powerful tool to detect shifts and 

distortions in the signal, thereby aligning them appropriately 

for further analysis. Further refining of the dataset includes 

processing of the maintenance log reports which undergo a 

procedure to extract and quantify salient features, such as 

fault type, spatial and temporal coordinates of the 

occurrences, severity of the detected faults, and the 

associated maintenance activities required. This information 

is crucial for understanding the context of the faults and 

planning preventive measures. 

The third stage integrates the outputs of the previous stages, 

creating a consolidated dataset that is primed for machine 

learning analytics. This stage is pivotal as it synthesizes the 

cleaned and aligned time series data with the qualitative 

information extracted from the maintenance logs, setting the 

foundation for robust analytical models. 

The fourth stage is the heart of the analysis, where two 

primary categories of machine learning techniques are 

employed: supervised and unsupervised learning methods. 

Unsupervised learning techniques, such as the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN), 

are adept at identifying novel fault types that may not have 

been previously recognized. DBSCAN is privileged for its 

proficiency in handling noise within the dataset, a common 

issue in large-scale industrial applications. However, while 

unsupervised methods excel at detection, they often falter in 

classification. To counter this, supervised learning methods 

are applied, harnessing the labelled data produced by 

unsupervised techniques to train models that can not only 

detect but also classify fault types. This dual approach 

ensures that newly occurring faults are not only detected but 

also categorized correctly. The supervised techniques 

selected for this stage include robust and widely used 

algorithms such as Convolutional Neural Networks (CNNs), 

which are particularly adept at spatial data recognition; k-

Nearest Neighbors (kNN), which classifies data based on the 

proximity to known cases; Random Forests (RF), an 

ensemble method that improves prediction robustness; and 

SVMs, which are effective in high-dimensional spaces. 

Finally, the last stage focuses on the evaluation of the model's 

performance, employing three key metrics: precision, recall, 

and the F1-score. Precision assesses the model's accuracy in 

predicting fault occurrences, mitigating the risk of false 

positives. Recall measures the model’s ability to identify all 

actual fault occurrences, thereby reducing false negatives. 

The F1-score harmonizes these two metrics, providing a 

single measure of the model’s accuracy in classification 

tasks, balancing the trade-off between precision and recall. 

This comprehensive and iterative process is essential for the 

identification and classification of faults in complex systems, 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 457



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

4 

such as those encountered in Network Rail's infrastructure. 

By meticulously processing the data and employing a blend 

of machine learning techniques, the methodology aims to 

yield a high-performing model capable of detecting and 

classifying faults, thus enhancing the maintenance and 

reliability of the rail network. 

3. RESULTS AND DISCUSSION  

3.1. Dataset analysis 

The datasets used in this study come from Network Rail and 

pertains to track geometry data acquired between 2016 and 

2017 during inspections run along the Southampton railway 

line. These datasets consist of 625 pdfs reports, 300 

multivariate time series data which includes track geometry 

measurements, maintenance team activity logs, and track 

defect reports. The temporal scope extends over 33 days, with 

an average monthly coverage of three days. The location 

parameter, although not a track geometry feature, is a crucial 

piece of information in the dataset because it provides a 

baseline for comparing data from different measurement time 

at the same point. The positioning errors in the recording 

could reach 100 m. The instrument failure can also cause 

some positions to be recorded as missing points, resulting in 

various positions for the same serial number in the data sets. 

Missing data at a position t is imputed by using and 

interpolation of different data points observed at a location [t-

w] and [t+w], where w (set to 5) helps including of 

neighbouring data points to enhance the imputation accuracy. 

For the alignment, the data points must first be aligned so that 

they are of the same length between data and that data points 

of the same ordinal number are in the same position. To 

perform the alignment, first DTW method was used to 

compute pairwise distance between the measurement, and 

close distance signal were used to compute a reference signal. 

Hence maximum value between the cross correlation and the 

reference signal were used to shift the measurement. Error! 

Reference source not found. and Error! Reference source 

not found. show an example before and after the alignment 

was performed using the Twist3m measurement.  

 

Figure 3 Twist3m measurement before alignment. 

 

After the temporal data alignment, the maintenance log files 

(shown in Error! Reference source not found.) are 

processed to extract the track identifier (trackid), the mileage, 

the type of fault (shown in the column “channel”), the peak 

value observed and the corresponding threshold value. These 

data are used to locate the fault in the temporal data and hence 

annotate it. We segmented by file instead of by time series 

index as the initial experiment on time index split provided 

imbalanced issues. 

The final annotated 300 multivariate time series datasets with 

about 20000 datapoints each are split into training (60%), 

validation (20%) and testing (20%). 

 

 

Figure 4 Twist3m after alignment. 

 

 

 
Figure 5 Example pdf report. 

3.2. Algorithms parameters 

The parameters summarised in Error! Reference source not 

found. were empirically tested and configured for this 

analysis.  

For Convolutional Neural Networks (CNN), the setup 

includes Conv2D, MaxPooling2D, and Dense layers with 

ReLU and Softmax activations, optimised using adaptive 

moment estimation (ADAM) with a learning rate of 0.001.  

The RF is configured with 100 trees, no maximum depth to 

allow full growth, a minimum of 2 samples required to split 

a node and uses the Gini criterion for quality of splits. 

DBSCAN was set with an epsilon value of 0.5 for maximum 

neighbourhood distance, and a minimum of 5 samples for 

core points, while employing Euclidean distance for its 

metric. DBSCAN being an unsupervised method cannot map 

automatically with classes, hence we mapped manually the 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 458



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

5 

cluster with a script that computes the cluster centre and the 

known fault centre.  

The k-NN algorithm uses 5 neighbours, uniform weights, 

automatically selects the algorithm for computing, and 

utilizes the Minkowski metric. Lastly, the Support Vector 

Machine (SVM) is configured with an RBF kernel, 

regularization parameter C set to 1.0, 'scale' for gamma, and 

a polynomial degree of 3, optimizing for non-linear data 

separation. Each configuration reflects the algorithm's focus, 

from spatial clustering and decision forests to similarity-

based learning and hyperplane optimization, illustrating the 

adaptability and specificity required for effective machine 

learning applications. 

Table 1 Methods and parameter settings. 

 

Method Parameter Configuration Example 

CNN Layers: Conv2D, MaxPooling2D, Dense; 

Activation: ReLU, Softmax;  

Optimizer: Adam; 

Learning Rate: 0.001 

RF Number of Trees: 100; 

Max Depth: None; 

Min Samples Split: 2; 

Criterion: Gini 

DBSCAN Epsilon: 0.5; 

Min Samples: 5; 

Metric: Euclidean 

kNN Number of Neighbours: 5; 

Weights: Uniform; 

Algorithm: Auto; 

Metric: Minkowski 

SVM Kernel: RBF; 

C: 1.0; 

Gamma: Scale; 

Degree: 3 

 

3.3. Analysis 

The evaluation of the employed method on the testing 

datasets through precision, recall, and f1-score metrics offers 

a detailed perspective on their performance in predictive 

modelling tasks. With a multiclass classification problem, 

average performance results are computed. As highlighted in 

Error! Reference source not found., CNN showcased a 

well-rounded performance with a precision of 97.8%, a recall 

of 97.69%, and an f1-score of 97.73%, indicating a high 

degree of accuracy and reliability in identifying relevant 

instances. RF also demonstrated a strong balance between 

precision (93.6%) and recall (95.21%), culminating in an f1-

score of 94.4%, which underscores its effectiveness in 

handling various data scenarios. DBSCAN, with a precision 

of 100%, indicates a perfect identification of relevant 

instances within its clusters, though its lower recall (88.60%) 

suggests some relevant instances may not be captured within 

its clusters, reflected in an f1-score of 93.95%. kNN and 

SVM both achieved high precision rates (97.6% and 100%, 

respectively) but with slightly lower recall rates (90.37% and 

87.95%, respectively), leading to f1-scores of 93.84% and 

93.58%, highlighting their precision in classification but at 

the expense of some sensitivity.  

Table 2 Method performance on the datasets. 

 
Method Precision (%) Recall (%) f1-score (%) 

Threshold 59.8 53.80 56.64 

CNN 97.8 97.69 97.73 

RF 93.6 95.21 94.4 

DBSCAN 100 88.60 93.95 

kNN 97.6 90.37 93.84 

SVM 100 87.95 93.58 

 

Figure 6 CNN confusion matrix. 

 

Focusing on CNN, Error! Reference source not found.7 

provides a confusion matrix table displaying the performance 

of a classification model on a testing set, summarizing how 

well the model distinguishes between five fault classes: 

Gauge Fault, Twist Fault, AL Fault, Cant, and Top. The 

matrix shows actual class labels on the vertical axis 

(TARGET) and predicted labels on the horizontal axis 

(OUTPUT), with each cell containing the count and 

percentage of instances. Diagonal cells (in green) represent 

correctly classified instances, while off-diagonal cells (in red) 

indicate misclassifications. The overall performance is 

impressive, with the model correctly classifying 97.80% of 

the instances (2445 out of 2500) and misclassifying only 

2.20% (55 out of 2500). Notably, "AL Fault" has the highest 

accuracy (99.00% correct), while "Top" has the highest 
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misclassification rate (4.00%), indicating a specific area for 

potential improvement. The table also includes sum totals for 

each class, providing a comprehensive overview of the 

model's classification capabilities. Figure 8 showing detailed 

performance tabulation was obtained by computing the 

relevant performance indicators from Figure 7. 

Figure 7 CNN detailed performance. 

 

Discussion of these results illustrates the inherent trade-offs 

between precision and recall metrics across different 

algorithms. CNN and RF, with their balanced precision and 

recall, are suited for applications where both false positives 

and false negatives carry significant consequences, providing 

a robust option for complex classification tasks. The perfect 

precision of DBSCAN and SVM suggests their utility in 

scenarios where the cost of false positives is high, making 

them ideal for applications requiring high confidence in the 

prediction of positive instances. However, their lower recall 

rates indicate a potential shortfall in identifying all actual 

positive instances, which could limit their application in 

scenarios where missing any positive instance carries a 

higher risk. kNN, while slightly less precise than SVM or 

DBSCAN, offers a good compromise between precision and 

recall, making it a versatile choice for many practical 

applications. These results underscore the importance of 

choosing the right algorithm based on the specific 

requirements and constraints of the task at hand, considering 

the balance between identifying relevant instances accurately 

while minimising false identifications. Although these 

algorithms have various degree of success, they still 

overperform traditional thresholds technique which precision 

is 59.8%. 

Comparing the machine learning model performance from 

the literature with the metrics provided reveals a notable 

advancement in precision, recall, and F1-score. While the 

literature highlights variances in SVM accuracy from 20% to 

80% across applications, this implementation showcases a 

substantial leap approaching 100% precision for SVM, 

underscoring a highly effective application or different 

context. Similarly, The CNN and kNN models not only 

surpass some of the literature's DNN and CNN benchmarks 

with CNN achieving a near parity with the highest reported 

accuracy of 94.3% (Sresakoolchai & Kaewunruen, 2022) but 

with superior precision and recall. The inclusion of DBSCAN 

in this analysis, demonstrating a 100% precision, further 

highlights the potential of selecting and tuning models to suit 

specific data characteristics and problem contexts. This 

synthesis underscores the importance of advanced model 

fine-tuning, the choice of metrics for performance evaluation, 

and the adaptability of machine learning algorithms to 

achieve higher efficacy in complex, non-linear problem 

spaces, especially in critical applications like fault detection 

in railway systems. In terms of training time, Figure 6 shows 

the models average estimated time (in blue) and their 

standard deviation denoted as Std (orange). Random Forest 

(RF) and Convolutional Neural Network (CNN) methods 

demonstrate the shortest training times, approximately 1000 

and 1200 seconds respectively, with minimal variability. 

These observations highlight that while SVM is 

computationally intensive, RF and CNN are more efficient, 

making them suitable choices when computational resources 

or time are limited. 

 

Figure 8 Average Model training time. 

4. CONCLUSION 

This paper presents a machine learning methodology that 

successfully improves false alarm rate of railway track 

quality inspections by 38%. While the datasets examined in 

this paper only pertain to one specific route, the methods 

presented here are applicable to all other railway lines across 

Britain, since the same NMT inspection vehicle is used.  

In the railways, repair interventions are costly, typically 

requiring a manual confirmation of the fault severity, parts, 
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labour, travel, service disruptions (denial), and penalty fees, 

as well as being hazardous for the on-foot personnel 

involved. The ability to correctly diagnose faults also ensures 

unnecessary speed restrictions are removed, improving 

journey times and passenger comfort. Evidently, the 

proposed methodology can potentially have considerable 

financial impact.  

Future work includes an analysis of the potential cost savings 

achieved using this methodology as well as the integration of 

context knowledge in the diagnostics.  
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