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ABSTRACT

Traditionally, companies have relied on vibration based con-
dition monitoring technologies to implement condition based
maintenance strategies. However, these technologies have
drawbacks, such as the requirement of contact accelerome-
ters. As an alternative, acoustic condition monitoring is non-
invasive and allows for easy deployment. Furthermore, the
use of microphones potentially enables the monitoring of mul-
tiple components using a single sensor, making the moni-
toring system scale better with machine or production com-
plexity. However, microphone signals typically show a low
signal-to-noise ratio (SNR), impacted by the high level of
background noise which is often present in industrial envi-
ronments. Particularly, the traditional method for monitoring
the health condition of rolling element bearings, based on as-
sessing whether the squared envelope spectrum of the bear-
ing signal exceeds a given threshold at the fault frequencies,
cause too many false positives when applied directly to mi-
crophone signals. It is therefore crucial to develop strategies
to increase the robustness of acoustic monitoring methods. In
this paper, we present and evaluate two data-driven strategies
to robustly diagnose bearing faults from a microphone signal.
Our proposed strategies are noise weighting based on the de-
tection of background noise, and an artificial intelligence (AI)
model that uses as input a combination of the traditional bear-
ing fault frequencies and the mel spectrum of the microphone
signal. These methods leverage both domain knowledge and
data-driven techniques to increase the detection robustness.
Our approach is implemented as a model trained and tested
on bearing accelerated lifetime tests performed in the Smart
Maintenance Lab setup at Flanders Make. Our results show
that the use of our proposed strategies leads to significant im-
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provements in diagnostic performance and time to first detec-
tion over noise-unaware acoustic monitoring methods.

1. INTRODUCTION

Condition monitoring involves the continuous monitoring of
machine parameters to detect changes that are indicative of a
developing fault. This a key component of condition based
maintenance, the strategy that schedules maintenance actions
based on the current health diagnosis of machine components,
with the goal of reducing equipment downtime and total main-
tenance cost. The detection of faults in rolling element bear-
ings is of special interest, since they are critical components
of rotating machinery, and their faulty signals are often masked
under other dominant sources (Randall, 2011). The use of
accelerometers is the most common approach for monitoring
bearing and gear faults, as vibrations often carry early infor-
mation of their incipient damages (Lee et al., 2014).

There exist a wide range of well-established signal process-
ing methods that are applied to vibration signals in order to
estimate the health condition of a bearing. One of the most
successful methods is envelope analysis, whose comprehen-
sive description is given in (Randall & Antoni, 2011). It relies
on the extraction and tracking of the fault characteristic fre-
quencies in the squared envelope spectrum (SES) of the vibra-
tion signal generated by the bearing. As their name suggests,
these frequencies are related to the bearing faults, and contain
an increasing amount of energy as faults become more seri-
ous. For bearings operating under conditions of low load and
low rotational speed, a different method based on stochas-
tic resonance is proposed and shown to outperform envelope
analysis in (Ompusunggu, Devos, & Petre, 2013).

However, a disadvantage of diagnosis techniques based on vi-
bration analysis is that the accelerometers should be mounted
close to the rotating component of interest. Consequently,
several accelerometers are needed to monitor multiple bear-
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ings, and accessibility constraints may render this impossible.

As an alternative to overcome these limitations, acoustic non-
contact sensors such as microphones have recently drawn at-
tention mainly for two reasons. First, they allow for easier
deployment, as they do not need to be physically mounted by
bolts, glue or magnets. Second, microphone signals may ac-
quire information from several bearing signatures, potentially
enabling the monitoring of multiple components with fewer
sensors than in schemes based on accelerometers. Neverthe-
less, microphones will unavoidably collect signals from un-
desirable noise sources mixed with the signals emitted by the
bearings. In industrial environments, these noise sources are
generally quite strong and varied in nature, leading to micro-
phone signals with low signal-to-noise ratio (SNR) that result
in poor diagnosis performance. For this reason, dedicated
methods to increase the robustness to background noise are
crucial in acoustic monitoring.

Due to the wide array of different noise sources present in
industrial environments, data-driven strategies are a power-
ful tool to increase the robustness of acoustic monitoring.
In a data-driven strategy, healthy and damaged bearings are
classified by a data-driven model trained using a set of rel-
evant acoustics features. In (Mian, Choudhary, & Fatima,
2022), six sound quality features from microphone signals
were used to train a support vector machine to diagnose bear-
ing damages. For the diagnosis of bearing, rotor and stator
faults in induction motors, a frequency domain feature ex-
tractor method combined with a nearest neighbour classifier
is proposed and shown to perform well in (Glowacz, 2019).

Another commonly used strategy to achieve robust acoustic
monitoring relies on microphone arrays and beamforming.
The works presented in (Cardenas Cabada, Leclere, Antoni,
& Hamzaoui, 2017; Ricardo Mauricio, Denayer, & Gryllias,
2022, 2023), and references therein, show that this strategy
can produce good diagnosis results for bearing monitoring
using beamforming. However, the requirement of multiple
microphones and precise positioning increases the practical
complexity of implementing this solution. For this reason,
we consider beamforming strategies outside of the scope of
this work, and focus on data-driven strategies using a single
microphone.

In this paper we propose two data-driven methods to increase
the robustness of the diagnosis of bearing faults using acous-
tic sensing. Our first approach is noise weighting based on
the detection of background noise, and the second one is an
artificial intelligence (AI) model whose input is a combina-
tion of the bearing fault frequencies and the mel-spectrum
of the microphone signal. These methods integrate both do-
main knowledge and a data-driven technique, and they are
trained and tested on bearing accelerated lifetime experiments
performed in the Smart Maintenance Lab setup at Flanders
Make. The goal is to evaluate the performance of our pro-

posed methods, and show that acoustic monitoring is a cost
effective and practical alternative to vibration monitoring.

The rest of this paper is structured as follows. In Section
2, the well-established envelope analysis method for bearing
fault diagnosis is reviewed, and an explanation of its poor per-
formance when applied to acoustic sensing is provided. Our
two proposed data-driven methods for robust acoustic bear-
ing fault diagnosis are detailed in Section 3. A description of
the experimental setup is given in Section 4, which includes
the performed bearing accelerated lifetime experiments, the
acoustic scene, and the parameters of the signal processing
and AI models. The performance of our proposed methods is
evaluated and discussed in Section 5. Finally, the main con-
clusions are summarized in Section 6.

2. PROBLEM STATEMENT

Rolling element bearings are a crucial component in a wide
variety of rotating machinery. However, over time they can
develop faults such as surface fatigue defects or wear. For
localized faults, as the rolling elements strike a fault in the
inner or outer race, an impulse is generated that excites high
frequency resonances on the structure between the bearing
and the sensor location.

2.1. Vibration-based bearing fault diagnosis

The vibration signals from a faulty bearing can be modelled
as a modulated blend of several signal components: an impul-
sive signal associated with the fault, the high frequency sig-
nals related to the the dynamics of other machine components
such as the shaft and gears, the modulation between these sig-
nals and additional noise. The well-established method for
bearing diagnostics is the so-called envelope method, which
first enhances the impulsive signal generated by the fault, and
then estimates the energy at the fault characteristic frequency
and its harmonics from its squared envelope spectrum (SES).
A complete explanation of the method is provided in (Randall
& Antoni, 2011).

In this paper we focus on inner race faults, for which the fault
characteristic frequency is the ball pass frequency, inner race
(BPFI), given by

fBPFI =
nfr
2

{
1 +

d

D
cosϕ

}
, (1)

where fr is the shaft speed (frequency), n is the number of
rolling elements, d is the diameter of the rolling elements, D
is the pitch diameter , and ϕ is the contact angle. Other fault
characteristic frequencies are the BPFO (ball pass frequency,
outer race) and the BSF (ball spin frequency), corresponding
respectively to outer race and rolling element faults.

In order to quantify the presence and severity of an inner race
fault, we use as a feature the median of the SES value at the
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Figure 1. The squared envelope spectrum (SES) of the signal
produced by a bearing with an inner race fault, acquired with
an accelerometer (top) and a microphone (bottom). The BPFI
and its first three harmonics are encircled in blue. The shaft
frequency, BPFO and BDF (twice the BSF) are indicated for
the sake of completeness.

BPFI and its harmonics. Throughout the rest of the paper, we
refer to this feature as the BPFI feature. Mathematically, it is
expressed as

ξBPFI = median
k
{Y (kfBPFI)} , k ∈ {1, . . . , nharm}, (2)

where Y (kfBPFI) denotes the peak magnitude of the SES at
the k-th harmonic of the BPFI, median

k
{·} denotes the me-

dian value of the set indexed by the integer k, and nharm is the
number of harmonics considered. Finding the peaks is done
by searching the maximum SES magnitude around the the-
oretical fault frequency (Eq. 1) and its harmonics, within a
pre-defined range tolerance.

2.2. Noise-unaware acoustic diagnosis

The direct application of diagnosis based on the fault char-
acteristic frequencies, such as the BPFI, to acoustic sensing
presents two problems. The first is that microphone signals
are generally weaker than vibration signals, due to the larger
distance between the microphone and the bearing. An ex-
ample of this issue is provided in Figure 1, which shows a
comparison of the SES from an accelerometer and a micro-
phone signal produced by a bearing with an inner race fault.
The BPFI and its first three harmonics can be easily identi-
fied in the accelerometer SES, while they cannot be clearly
distinguished from the noise floor in the microphone SES.

Figure 2. Comparison of the BPFI feature ξBPFI between an
accelerometer (top) and a microphone signal (bottom) over a
bearing accelerated lifetime.

Figure 3. Comparison of the distribution of microphone-
based BPFI feature ξBPFI between healthy and faulty states
over the entire dataset.

The second problem is that the background acoustic noise is
considerably stronger than the noise present in a vibration sig-
nal acquired by an accelerometer, and more diverse in nature
due to the wide variety of potential noise sources present in
industrial environments. As a result, microphone signals typ-
ically have a significantly poorer SNR. Moreover, due to this
background noise, there will be additional energy present in
the BPFI and its harmonics even when the bearing is healthy,
leading to a great number of false positives over the bearing’s
lifetime.

This matter is illustrated in Figure 2, where a comparison is
shown between the BPFI feature of an accelerometer and a
microphone signal over the lifetime of a bearing in one of
our accelerated lifetime experiments. The experimental setup
and conditions are described in Section 4. It can be readily
seen that the BPFI feature in the accelerometer signal dis-
plays a clear distinction between the healthy and faulty states
of the bearing, while the BPFI feature in the microphone sig-
nal exhibits many spikes during the healthy state, leading to
an unreliable diagnosis of the bearing inner race fault. Fig-
ure 3 further demonstrates the difficulty by showing the great
overlap between the distributions of BPFI feature values ac-
quired through the microphone for bearings in healthy and
faulty states.
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Figure 4. Diagram of the noise-unaware method with shallow
AI for diagnosis of bearing inner race faults with acoustic
sensing. The diagram would represent the baseline method
by removing the shallow AI and the RMS feature.

The simplest strategy to enhance the diagnostic performance
using the BPFI feature is to introduce a smoothing step. This
method, with the choice of a median filter for smoothing, is
what we consider our baseline for comparing the performance
of diagnostic methods in this paper.

A more refined step is to introduce a shallow AI model before
smoothing. In our case, this shallow AI is a two-layer fully
connected neural network (NN) whose input features are the
BPFI feature ξBPFI and the RMS value of the microphone sig-
nal. Both methods do not take the presence of acoustic noise
explicitly into account, so we refer to them as noise-unaware
methods. In particular, the BPFI and RMS features are very
poor informants on the presence of background noise, hence
the shallow AI can learn very little about rejecting undesired
disturbances.

Figure 4 displays a diagram representing noise-unaware di-
agnosis with shallow AI and smoothing. The same diagram
would represent the baseline method by removing the RMS
feature and the shallow AI block.

3. METHODS FOR ROBUST ACOUSTIC BEARING FAULT
DIAGNOSIS

In this section we describe the two data-driven methods that
we propose to increase robustness to noise in acoustic bear-
ing fault diagnosis. As explained in Section 2, background
noise introduces unreliability in the form of a high amount of
false positives. The goal becomes therefore to reduce these
false positives while retaining as much of the true positives as
possible.

3.1. Noise-aware smoothing

Noise-aware smoothing aims to refine the health indicator
calculated from the BPFI feature by taking into account the
noise level present at each interval of time. To achieve this,
a weighted median filter is applied to the raw health indica-
tor over an interval of the last N points, where the weights
are designed such that the influence of each point is inversely
proportional to its noise level. A diagram of the diagnosis
process including this strategy is shown in Figure 5.

The weighted median filter works as follows. If we are given
a series of predictions x0, ..., xt with noise levels d0, ..., dt ∈

Figure 5. Diagram of noise-aware smoothing for diagnosis of
bearing inner race faults with acoustic sensing.

[0, 1], and a window size N , the noise-weighted prediction at
time t would be computed as follows:

1. Assign a weight to every prediction xt′ as 1− dt′ .
2. Sort predictions xt−N , ..., xt and keep their associated

weights wt−N , ..., wt in that order too.

3. Compute the cumulative weight for each item xt′ , i.e.∑t′

a=t−N wa.

4. The item where the cumulative weight exceeds half of
the total weight is the weighted prediction, i.e. x′t at time
t such that

∑t′

a=t−N wa ≥ 1
2

∑t
w=t−N wa

Median smoothing follows the same procedure, except that
all the weights are set to 1, reducing it to a regular median
filter.

In order to obtain a noise level, each time interval is assigned
a score that represents the likelihood that an undesired acous-
tic disturbance is present in it. For our case, an undesired
disturbance is defined as any short-time sound that is not in-
formative about the phenomenon being monitored, i.e., all
sound events not generated by the bearing of interest itself.
This excludes stationary background noise as well as distur-
bances that take last longer than a round of data acquisition
(ten (10) seconds in our case).

This score is computed as the maximum of the output of a
collection of noise detectors. These detectors are designed
to indicate acoustic disturbances that can be characterized as
events. This means any sounds whose presence in time, al-
though it may be repeated, is limited. Examples include tools
getting dropped, sporadic speech, various machinery turning
on or off. Specifically, we implemented detectors targeting
disturbances with the following characteristics:

Narrow-band disturbances: This detector indicates the pres-
ence of noise in a specific frequency band. In our experi-
ments, the sources of this kind of disturbances were a pump
and a forklift present in our laboratory.

High frequency disturbances: This detector indicates the
presence loud, complex noises that have a lot of energy in
high frequency bands. In our experiments, the source of this
kind of disturbances was a neighboring experimental setup
that kept loudly dropping off metal pipes.
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Figure 6. Example of the output of the detector for general
loud disturbances. The regions circled correspond to intervals
where no disturbance is detected.

General loud disturbances: A detector for loud events, de-
signed to capture sudden changes in the root mean squared
(RMS) value of the signal. This takes into account the fact
that the bearings do not cause such changes at any point in
their operation.

Speech disturbances: Voice Activity Detection (VAD) is a
field of active research with many mature results. For this
reason, we chose to utilize a VAD solution, provided by the
Silero project (SileroTeam, 2021), based on a pre-trained neu-
ral network.

All detectors, except those for speech and general loud distur-
bances, require a characterization of the acoustic disturbances
in the environment where the bearing of interest is located.
An example of the output of the detector for general loud dis-
turbances is shown in Figure 6. This detector captures some
loud events that do not correspond to our known disturbance
sources, marked as unknown. It also reacts to the pump acti-
vation, since it produces sudden changes in the RMS value of
the signal. Capturing the same disturbance with several de-
tectors is beneficial, as we are interested in catching as many
as possible rather than determining their type. The regions
of low disturbance score, that appear circled in the graph, are
those given higher weight by noise-aware smoothing.

3.2. Noise awareness with deep AI and hybrid features

This method aims to utilize a deep AI model to obtain a reli-
able health indicator of bearing faults from acoustic informa-
tion. The main idea is to introduce and train a deep AI model
that uses adequately general features extracted from micro-
phone recordings of healthy and faulty bearings. At a high
level, it operates as a generalized way to clue the model in
about what parts of the frequency spectrum are useful to pay
attention to, and which parts are best to ignore. This model
acts in combination with the very specific fault frequency fea-
tures, thus integrating a data-driven technique with domain
knowledge. The diagram in Figure 7 represents the diagnos-
tic process that combines the indicators from both the BPFI
feature and the deep AI-model.

The advantages of using a deep AI model are twofold. The
first one is that it can learn complex patterns during the train-
ing process, leading to better diagnostic performance. The

Figure 7. Diagram of deep AI-based noise awareness for di-
agnosis of bearing inner race faults with acoustic sensing.

second one is that, as long as sufficiently varied examples
of disturbances are included during the training phase, it can
learn to work with many kinds of noise sources.

The features for this method need to represent the relevant
bearing fault information while being of reasonable dimen-
sionality. For this purpose, the features we chose are the mel-
spectrogram of the acoustic signal. This is a spectrogram ob-
tained by a mel filter bank, a set of half-overlapped triangular
filters equally spaced on the mel scale (Rabiner & Schafer,
2010). Since this is a logarithmic scale for frequency, the fil-
ters are narrower for low frequency bands and wider for high
frequency bands.

For training, we chose a supervised approach, where we use
as labels the output of anomaly detection from the accelerom-
eter signal as ground truth. The features are normalized using
their values at the start of the experiment, as the absence of
normalization would be too sensitive to microphone gain and
positioning.

There are several choices for the deep AI model, such as a
deep neural network, a recurrent neural network, a tempo-
ral convolutional network or a transformer. In this work, our
choice is a deep neural network (DNN), whose specifics are
given in Section 4.3.

4. EXPERIMENTAL SETUP

The bearing datasets used in this study are collected in Flan-
ders Make’s Smart Maintenance Living Lab (Ooijevaar et al.,
2019). This lab is developed as an open test and develop-
ment platform and aims to support the adoption of condition
monitoring technologies in the industry. It consists of seven
identical drive train sub-systems. The setups are designed to
perform accelerated lifetime testing of bearings and run bear-
ings to their end-of-life. The accelerated lifetime test allows
to create surface fatigue faults in bearings and monitor the
fault evolution and accumulation during the (accelerated) life.

4.1. Bearing test rig and accelerated lifetime experiments

One of these experimental setups to perform the accelerated
lifetime test is shown in the middle image of Figure 8. The
setup comprises of a single shaft with a test bearing. The shaft
is supported by a support bearing on each side. The test bear-
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Figure 8. Illustration of the initial bearing state (left), the
experimental test rig setup designed to perform accelerated
life tests (middle), and the final state, a surface fatigue fault
at the inner race of the bearing (right).

ing is lubricated by an internal oil bath. The setup is driven
by a motor at a rotation speed up to 3000 RPM. In this work,
we focus on experiments driven at 2000 RPM. Each setup
is equipped with an accelerometer, temperature sensor, load
sensor and speed sensor. The radial accelerations are mea-
sured at a sampling frequency of 50 kHz by an accelerometer
attached to the bearing housing. The rotational speed and ra-
dial load of each setup can be controlled, such that each setup
can operate at stationary and non-stationary operating con-
ditions. An industrial Beckhoff control platform is used to
acquire and store the sensor signals and to control the speed
and load of each setup.

In total more than 70 bearing accelerated life tests have been
performed on a FAG 6205-C-TVH deep groove ball bearing
resulting in surface fatigue faults at the inner race. Two mech-
anisms are used to accelerate the bearing lifetime:

• A high radial load up to 9 kN (C/P = 1.6) is applied to
the bearing outer ring with a hydraulic cylinder.

• Before the start of the test a small initial indentation of
approximately 300 µm was created in the bearing inner
race using a Rockwell C hardness tester. This indentation
is used as a local stress riser and represents a local plas-
tic deformation caused by, for instance, a contamination
particle.

The accelerated life time tests are stopped as soon as 20g
peak-to-peak accelerations are reached, resulting in severe
rolling contact surface fatigue at the inner race (Halme & An-
dersson, 2009). The start and end condition of the inner race
of one of the test bearing are shown in the left and right im-
ages of Figure 8.

4.2. Acoustic setup

The acoustic signals are acquired through two B&K 4189A21
microphones sampled at 50 kHz. One of them was placed
under the safety cover of the bearing test setup, and the other
outside of the cover, as showed in Figure 9. These micro-
phones will be referred to respectively as IntMic and ExtMic

(a) Microphone inside the
safety cover, referred to as
IntMic.

(b) Microphone outside the
safety cover, referred to as
ExtMic.

Figure 9. Illustration of microphone positions used for the
experimental recordings.

Figure 10. Illustration of the acoustic scene.

throughout the rest of the paper.

The experimental setup is situated in a large laboratory area
at Flanders Make’s facilities in Leuven, which has an uncon-
trolled and reverberant acoustic environment shown in Figure
10. It is a concrete room that contains many different kinds
of setups such as drivetrains, looming machines etc., some-
times running simultaneously. There is also human activity
with technicians and engineers running and maintaining the
setups, or going about their daily activities. Due to the vary-
ing sizes of the setups here, sometimes small vehicles like
forklifts or the crane integrated into the laboratory can also
operate here. This makes the background noise potentially
quite complex.

Specifically for the dataset we collected, there are a few com-
mon sources of noise that are often present, and we chose
them as our focus for techniques that need us to character-
ize the kind of background noises that need suppressing. The
most consistent, and arguably the simplest, disturbance is that
coming from the hydraulic pump used to apply load on the
test bearing. This pump activates roughly every minute in or-
der to keep the pressure, and thus the load, constant. This cre-
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Figure 11. The spectrogram of an instance of pump activation
with a faulty bearing being tested, captured by the ExtMic mi-
crophone. The pump activity is highlighted inside the green
rectangle.

ates a very audible and consistent noise that is quite apparent
in the signal, as can be readily observed in the spectrogram
presented in Figure 11. The second common disturbance is
a sharp, impulsive noise made by a nearby setup dropping
metal pipes in a container. This happens once or twice a
minute. Finally, on multiple occasions, there are people who
are either walking or standing around the setup while in con-
versation. These are usually captured by the microphones,
and constitute a third kind of disturbance we are interested in.

4.3. Processing configuration

The feature extraction is performed on segments of 10 sec-
onds. For the BPFI feature, the tolerance of the SES peak
search around the BPFI and its harmonics is set to 1.5% of
the theoretical frequency (Eq. 1). The number of harmonics
nharm for the calculation of ξBPFI (Eq. 2) is set to 4. The mel
spectrogram is calculated on 64 mel bands. The features are
normalized using Z-score normalization, where the mean and
standard deviation are computed on the first 30 minutes of
the corresponding experiment. In experiments that lasted for
more than one day, this calculation is done for each day.

Our dataset consists of two groups of run-till-failure exper-
iments, all at 2000 RPM, where the bearing developed an
inner race fault. The first group is characterized by contin-
uous monitoring, where the sensors (accelerometer and mi-
crophones) constantly acquired data. This group contains 11
experiments, 7 of which run till failure and 4 of them ended
prematurely. The second group contains 5 experiments were
periodic monitoring of 1 second every 10 seconds was ap-
plied, 3 of them run till failure and 2 of them ended prema-
turely. This group is only used for training purposes. For
cross-validation purposes, the dataset is split in three folds.

In addition to the captured data, a set of ground truth labels
is also provided. It should be noted here that this labelling is
not based directly on the physical state of the bearing, since it
would not be available without stopping the test and disman-
tling the bearing, but based on analysis of the data captured
by the accelerometer. Using this labelling the moment in time
where the bearing starts having faulty behavior is determined.
Data prior to this moment is then considered as healthy, and
data afterwards is considered faulty.

For the deep AI model, we choose a deep neural network
(DNN) with an input layer, three hidden layers of 32, 16 and
8 units, and an output layer.

5. RESULTS AND DISCUSSION

In this section, we evaluate and compare the performance
of both noise-aware and noise-unaware methods for bearing
fault diagnosis using the microphone ExtMic signals, as its
location outside of the safety cover of the setup is the most
realistic. For clarity, we provide a summary of the methods
evaluated in the following list.

1. Noise-unaware methods: These methods, described in
Section 2.2, do not take the presence of noise explic-
itly into account. A diagram illustrating both methods
is shown in Figure 4.
(a) Baseline: The baseline method is based on the BPFI

feature with median-smoothing.
(b) Shallow AI: This method uses the BPFI and RMS

features as input to a two-layer fully connected NN
(shallow AI) and median-smoothing to achieve a di-
agnosis result.

2. Noise-aware methods: These methods aim to increase
their robustness to noise, as explained in Section 3.
(a) Noise-aware smoothing: The method described in

Section 3.1, where the weights of the smoothing fil-
ter depend on the detected noise level. Its diagram
is shown in Figure 5.

(b) Deep AI with hybrid features: The method de-
tailed in Section 3.2. It combines the BPFI and
RMS features with mel spectrum features, where
the latter are the input of the DNN (the deep AI
model). It uses median-smoothing to obtain a di-
agnosis result. Its diagram is shown in Figure 7.

(c) Deep AI combined with noise smoothing: This
method is a combination of the two previous meth-
ods, i.e., the methods 2a and 2b.

5.1. Performance metrics

We use several metrics to assess the diagnostic performance
of the proposed methods.

• EPR: The point on a precision vs. recall plot where these
two metrics are equal. A high score indicates a high ratio
of true positives with respect to both predicted positive
samples and real positive samples. Expressed as a per-
centage.

• ROD: Rate of detection, the rate at which faults are de-
tected before the safety stop, at a given precision value,
equivalent to recall. In our case, we compute this value
at 99% precision. More formally, if TP and FN denote
respectively the true positive and false negative counts,
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then
ROD =

TP

TP + FN
, (3)

where TP
TP+FP > .99. Expressed as a percentage.

• TOFD: Average time of first detection in seconds, i.e,
the time between the occurrence of the fault and the first
time the model detects its, for a given precision value. In
our case we compute this value at 99% precision, and it
is only considered if the ROD is 100%. In the same way
as our ground truth labels, the occurrence of the fault
is defined based on accelerometer data. Note that this
metric can be defined w.r.t. any source more reliable than
the acoustic signal we are using. Formally, this metric is
computed as

1

N

N∑

n=1

tfault,n − tdetection,n, (4)

where ROD = 1.0, tdetection,n is the time of detection,
and tfault,n is the time the fault occurred, both for the
n-th experiment.

Regarding the TOFD metric, note that there is always some
delay between the occurrence of a fault and its detection.
There are two main sources of this delay. The first one is re-
lated to smoothing, and is not affected by the fact that we are
running accelerated lifetime tests. This means that it would
remain constant (for a given smoothing filter) even in regular
testing. The second is the time gap between the fault being
available to a vibration sensor versus it being available to an
acoustic sensor. This delay pertains to the evolution of the
fault, and therefore scales with the fault accelerations applied
during the testing procedure. If we were to run regular life-
time tests, these delays would be multiplied by a correspond-
ing factor. This means that, while the first delay is adjustable,
the second delay is a consequence of the physics of the sys-
tem and can only be reduced so much. It is a hard constraint
on acoustic monitoring.

5.2. Performance results

The performance metrics for our evaluated methods are dis-
played in Table 1.

5.2.1. Performance of noise-unaware methods

It can be clearly seen that the baseline method’s performance
is quite poor, since its EPR is barely over 50 %, and at 99%
precision it is only able to detect 14% of the faults.

The introduction of the shallow AI causes a significant jump
in model performance, where it can now reach 100% ROD at
a precision level of 99%, and an EPR point of 69%. How-
ever, note that the TOFD of 1520 seconds, about 25 minutes,
is quite high, due to the required size of the smoothing win-

Table 1. Performance results of the evaluated methods.

Method EPR ROD TOFD
Baseline 55% 14% -

Shallow AI 69% 100 % 1520 sec

Noise-aware smoothing 72% 100 % 1031 sec

Deep AI & hybrid features 79% 100 % 605 sec

Deep AI & hybrid features
+ noise-aware smoothing 81% 100 % 600 sec

Figure 12. Example of health indicator obtained from the
shallow AI method before and after median smoothing.

dow to reach a high precision. An example from the health
indicator obtained by the shallow AI method is displayed in
Figure 12, both before and after median smoothing. It can
be observed that the shallow AI allows for a clear distinction
of the faulty state when the fault actually develops, but it is
the smoothing that removes the high amount of false posi-
tives. However, each process introduces a noticeable delay in
the health indicator, which is expected to be dependent on the
particular characteristics of the background noise.

5.2.2. Performance of noise-aware methods

The use of noise-aware smoothing increases the EPR to 72%,
maintains the ROD of 100%, and its TOFD is decreased by
33% with respect to the TOFD of the shallow AI method.
This is a strict but moderate improvement over the best noise-
unaware method.

The further addition of the mel spectrum features and the
deep AI model causes a significant leap in performance, where
the EPR point reaches 79%, and the TOFD is decreased by
42% and 60% of the TOFD values of the noise smoothing and
shallow AI methods respectively. This improvement demon-
strates the ability of the DNN to learn complex patterns from
the mel spectrum features, and to complement the BPFI fea-
ture to achieve a better diagnostic performance. An example
from the health indicator obtained by this method is displayed
in Figure 13, both before and after median smoothing. It can
be readily observed that before smoothing, the false positives
are notably less frequent than in the example of the shallow
AI method from the same experiment, shown in Figure 12.
Smoothing removes these false positives, but crucially it in-
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Figure 13. Example of health indicator obtained from the
deep AI with hybrid features method before and after median
smoothing.

Table 2. EPR points for median and noise-aware smoothing
for methods 1b, 2a, 2b and 2c. Hybrid refers to the combina-
tion of BPFI and RMS with mel spectrum features.

Smoothing type Features

BPFI & RMS Hybrid
Median 69% 79%

Noise-aware 72% 81%

troduces less delay than in the shallow AI example. The rea-
son is that, as the deep AI method produces fewer false posi-
tives, the smoothing window can be shorter, thus minimizing
the additional delay introduced by this step.

Last of all, the combination of the two noise-aware methods,
i.e., where noise-smoothing is applied to the deep AI method
with hybrid features, achieves a moderate increase of the EPR
until 81%, and no significant reduction in TOFD.

5.3. Effect of smoothing: noise-aware vs median

Note that the inclusion of noise-aware smoothing results in
a moderate EPR improvement over the same method using
median smoothing. This can be seen in Table 2, where the
EPR points are arranged depending on the smoothing type
and features that methods utilize. The reason is that noise-
aware smoothing addresses the following issues:

• For a true increase in the anomaly score, noise-aware
smoothing is typically faster to respond due to its non-
even weighting.

• In case of quickly fluctuating anomaly scores, median
smoothing is a lot less stable due to its inability to choose
what to prioritize.

In most other cases noise-aware smoothing behaves compa-
rably to median-smoothing, offering the same benefits. This
makes noise-aware smoothing an attractive enhancement, al-
though it comes with the additional cost of designing appro-
priate noise detectors for the acoustic scene where the ma-
chinery of the monitored bearings operates.

6. CONCLUSION

In this study, we have focused on developing robust meth-
ods for acoustic condition monitoring of inner race faults in
rolling element bearings in industrial environments. This is
a challenging problem due to the strong influence of back-
ground noise, which introduces a high amount of false posi-
tives and delays fault detection, resulting in poor diagnostic
performance. Our two proposed noise-aware methods have
different levels of complexity. The first and simplest one is
noise-aware smoothing, which adapts the smoothing weights
according to the detected noise levels. The second and more
complex one is a deep AI model that uses mel spectrum fea-
tures and acts in combination with the bearing fault frequen-
cies to achieve a diagnostic result. These methods have been
trained and tested with an accelerated bearing lifetime dataset
acquired in the Flanders Make Smart Maintenance Lab, which
is a reverberant environment where strong and diverse acous-
tic disturbances were present.

The results demonstrate significant improvements over the
noise-unaware baseline, both in diagnostic performance and
in detection time, using a single microphone signal. More-
over, these benefits are distinct both when the noise-aware
methods are applied independently or in combination, so they
can thus be chosen according to the monitoring requirements
of each particular use case. In summary, we have shown
that, when employing adequate strategies to increase robust-
ness to noise, acoustic monitoring can be a cost-effective and
practical alternative for vibration monitoring. Future work in
this problem involves studying the influence of the training
dataset size on accuracy, applying and testing our strategies
to other bearing fault types, and studying the effect of data
augmentation in the training of the deep AI model.
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