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ABSTRACT

Modern manufacturing equipment offers numerous config-
urable parameters for optimization, yet operators often under-
utilize them. Recent advancements in machine learning (ML)
have introduced data-driven models in industrial settings, in-
tegrating key equipment characteristics. This paper evaluates
the performance of ML models in classification tasks, reveal-
ing nuanced observations. Understanding model decision-
making processes in failure detection is crucial, and a guided
approach aids in comprehending model failures, although hu-
man verification is essential. We introduce MOXAI, a data-
driven approach leveraging existing pre-trained ML models
to optimize manufacturing machine parameters. MOXAI un-
derscores the significance of explainable artificial intelligence
(XAI) in enhancing data-driven process tuning for produc-
tion optimization and predictive maintenance. MOXAI as-
sists operators in adjusting process settings to mitigate ma-
chine failures and production quality degradation, relying on
techniques like DiCE for automatic counterfactual generation
and LIME to enhance the interpretability of the ML model’s
decision-making process. Leveraging these two techniques,
our research highlights the significance of explaining the model
and proposing the recommended parameter setting for im-
proving the process.

1. INTRODUCTION

Today’s highly automated manufacturing equipment often
provides many configurable parameters to ensure optimal
production and accommodate an increased range of products.
In practice, machine operators and process engineers rely on
a limited set of well-understood key parameters for process
controlling and optimization, overlooking the broader space
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of configurable options and underutilizing the potential to en-
hance equipment effectiveness. The increased demand for in-
dividualization and, consequently, the decrease in batch sizes
amplify this effect and further increase the workload for op-
erators. Recent advances in machine learning have led to
a surge in data-driven AI/ML models deployed in industrial
scenarios for applications such as quality inspection and pre-
dictive maintenance, which have integrated key characteris-
tics and patterns of production equipment.

The demand for explainability becomes crucial to optimizing
complex manufacturing and production processes as mod-
els grow more intricate, resembling “black boxes” that hin-
der users from understanding the rationale behind predic-
tions. Explainable Artificial Intelligence (XAI) methods
address this challenge by providing human-understandable
explanations for data-driven decisions. In XAI, two pri-
mary categories are evident (Molnar, 2020): model-agnostic
and model-specific approaches. Model-agnostic techniques,
such as feature importance and surrogate models, offer in-
sights into decision-making processes across various mod-
els. Conversely, model-specific methods delve into a model’s
intrinsic aspects, such as coefficients in linear regression
or visualizing decision cuts in decision trees. Local and
global scopes characterize explanations, with techniques
like Local Interpretable Model-Agnostic (LIME) (Ribeiro,
Singh, & Guestrin, 2016), and Shapely Additive Explana-
tions (Lundberg & Lee, 2017) offering local insights. An-
other popular approach in XAI is counterfactual explana-
tions (Ates, Aksar, Leung, & Coskun, 2021; Jalali, Haslhofer,
Kriglstein, & Rauber, 2023), which determine changes to in-
put data necessary for altering a model’s output.

In this work, we strive to automate the process of providing
recommendations to machine operators in an interpretable
manner, empowering them to understand and adjust param-
eters effectively for optimal performance (Fig. 1). For this
purpose, we introduce MOXAI tuning, a data-driven approach
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leveraging existing pre-trained AI/ML data models to opti-
mize manufacturing machine parameters by applying model-
agnostic counterfactual explanations. Given that numerous
manufacturing optimization and predictive maintenance tasks
are framed within a binary classification –distinguishing be-
tween healthy and damaged assets, or regression – predict-
ing health indicators or remaining useful life, counterfactuals
emerge as a compelling solution.

To demonstrate the concept and applicability of the proposed
approach, we apply MOXAI on the AI4I 2020 Predictive
Maintenance Dataset (Matzka, 2020), which is a simulated
dataset designed to mirror authentic predictive maintenance
data typically observed in industrial manufacturing settings.
Applying MOXAI to those samples where the model predicts
machine failures, we can analyze the rationale behind these
predictions and obtain suggested modifications to fine-tune
different process parameters and prevent machine failures.
By querying MOXAI for explanations, we assume that mit-
igating the reasons behind the model failure prediction will
result in an enhanced quality outcome. MOXAI explanations
are constrained to a subset of features directly or indirectly
controlled by the operator. Evaluations involve comparing
model suggestions with production settings to quantify the
impact on machine failures, by applying LIME to verify the
explanations discovered.

The rest of the paper is structured as follows: First, an
overview of the related work is given in Section 2 . Section
3 introduces MOXAI. Section 4 describes the experimental
setup considered for evaluation purposes, presenting experi-
mental results. Further discussion on results and MOXAI’s
approach is presented in Section 5. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK

Two main categories emerge in the domain of XAI: model-
agnostic and model-specific approaches. Model-agnostic
techniques do not rely on specific model characteristics and
can generally be applicable across various models to provide
insights into their decision-making process (Molnar, 2020).
Such methods include feature importance (e.g., shapely val-
ues (Lipovetsky & Conklin, 2001)) and model approxima-
tion techniques (e.g., surrogate models (Ribeiro et al., 2016)).
Conversely, model-specific approaches study the intrinsic as-
pects of a model and offer a deeper understanding of its
learning structure. For instance, coefficients of a linear re-
gression model, visualization of decision cuts of a shal-
low decision tree, or more complex approaches such as
Layer-Wise propagation explanations (Bach et al., 2015),
DeepLift (Shrikumar, Greenside, & Kundaje, 2017), and
Class Activation Map (Zhou, Khosla, Lapedriza, Oliva, &
Torralba, 2016), which visualize the distributed weights of
a neural network.

The scope of the explanations provided by either of the
aforementioned techniques can be either local (explaining
one sample) or global (explaining all the samples) (Molnar,
2020). Local Interpretable Model-Agnostic (LIME) (Ribeiro
et al., 2016), and Shapely Additive exPlanations (Lundberg &
Lee, 2017) are popular techniques that produce local expla-
nations. Recent studies suggest that the comprehensibility of
local explanations, specifically when including the counter-
factuals, increases the human understanding of the model’s
decision boundary (Jalali et al., 2023). Counterfactual expla-
nations are “hypothetical samples that are as similar as pos-
sible to the sample that is explained while having a different
classification label” (Ates et al., 2021). Therefore, we argue
that combining a local explainability approach with generat-
ing counterfactuals can help an end user understand the small
meaningful changes that cause the shift in the model’s deci-
sion with minimal computational effort.

Many XAI approaches have been applied in the literature
to address manufacturing optimization problems. Schock-
aert et al. (Schockaert, Macher, & Schmitz, 2020) propose
an approach for local interpretability of a model optimized
on training data, which forecasts the temperature of the hot
metal a blast furnace produces. Combining a Variational Au-
toEncoder (VAE) with LIME significantly improves gener-
ated synthetic samples for training the ML model. Seiffer
et al. (Seiffer, Ziekow, Schreier, & Gerling, 2021) develop a
framework to detect temporal changes in manufacturing data
with SHAP values to enhance error prediction. The frame-
work detects and handles concept drift so that the gener-
ated ML models are of sufficient quality in the long term.
Jakubowski et al. (Jakubowski, Stanisz, Bobek, & Nalepa,
2021) developed an LSTM autoencoder model for detecting
anomalies in the hot rolling process to produce steel coils.
They applied SHAP explanations to determine the reasons for
anomalies. Regarding model interpretability, Jakubowski et
al. (Jakubowski, Stanisz, Bobek, & Nalepa, 2022) employed
the SHAP method and counterfactual explanations to gain in-
sight into the decisions made by their trained models. These
explanations effectively highlighted the features responsible
for the abnormal state of the mill or work rolls, helping iden-
tify the anomaly’s root cause. Ameli et al. (Ameli et al., 2022)
employ XAI methodologies to determine the specific sen-
sors exhibiting anomalies, enhancing decision-making within
glass production monitoring. These sensors are localized,
analyzing the cause of anomalies by saliency XAI. The ap-
proach of Senoner et al. (Senoner, Netland, & Feuerriegel,
2022) involves the development of a data-driven decision
model by leveraging high-dimensional data with nonlinear re-
lationships alongside SHAP to discern the intricate relation-
ships between production parameters and manufacturing pro-
cess quality.

In summary, XAI methods are sporadically utilized in pro-
duction and predictive maintenance to optimize models and
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Figure 1. MOXAI information flow for parameter recommen-
dations.

enhance understanding. The approach involving counterfac-
tuals has been minimally employed thus far despite its con-
siderable promise in this domain.

3. METHODOLOGY

The general idea of MOXAI is to extract suggestions for
production parameters (i.e., part of the AI/ML model input
features) leading to a desired manufacturing target, relying
on pre-trained AI/ML models, and using XAI local explana-
tions through so-called counterfactual instances. A counter-
factual instance is a synthetic data point similar to the orig-
inal instance but with a different model outcome. It is cre-
ated by perturbing the model’s input parameters within cer-
tain bounds. Our goal through counterfactual explanations
is to answer the question “what changes to the input (pro-
duction) parameters of the model would have resulted in a
different prediction?”. MOXAI allows for faster fine-tuning
of the configuration of a production process by iterating over
instances for which the production output is not as desired.

3.1. Automatic Parameter-Settings’ Recommendation

We developed MOXAI to guide machine operators toward
better production parameters in case of product quality de-
viations. We envision a scenario in which process control,
quality inspections, or data-driven models indicate a devia-
tion, and the operator is uncertain how to modify the config-
uration. MOXAI leverages methods from explainable AI to
suggest an optimized configuration based on the most recent
sample. It requires an existing data model for product quality
prediction based on the process parameter and configuration.
Our model-agnostic method requires the changeable machine
configuration to be part of the model input.

We use the framework for Diverse Counterfactual Explana-
tions (DiCE) (Mothilal, Sharma, & Tan, 2020) to generate
recommendations. We leverage counterfactuals to suggest
machine parameters that produce good product quality ac-
cording to the data model. DiCE aims to generate action-
able counterfactual sets, ensuring that individual counterfac-
tual examples are feasible and diverse. To achieve this, DiCE
adapts diversity metrics through diversity via Determinantal
Point Processes (Kulesza, Taskar, et al., 2012) and incorpo-
rates feasibility using proximity constraints and user-defined
constraints. Process parameters are optimized by extracting
the model’s capability to determine which parameters lead to
a high-quality product. It also addresses sparsity by consid-
ering the minimal number of features that must be changed
to transition to the counterfactual class. Additionally, it al-
lows users to specify constraints on feature manipulation,
such as box constraints on feasible feature ranges, to ensure
the practicality of counterfactual examples within real-world
constraints. The MOXAI workflow is depicted in Figure 1.

3.2. Human-Guided Correction of Model Failures

To understand the model’s decision boundary for detecting
defected cases from no-defect cases, we apply LIME, which
also offers understandable visualizations for operators and
developers to understand why the model failed to detect de-
fective samples. LIME produces instance-based explanations
by estimating the decision boundary of the black-box model
within a narrow neighborhood. The underlying assumption
is that a linear model can effectively approximate the lo-
cal decision boundary of the black box. The coefficients of
this linear model then elucidate the contribution of each fea-
ture to the prediction of a sample within this neighborhood.
Consequently, LIME’s explanations are represented by fea-
ture value boundaries. These boundaries signify the impact
of each feature; when the feature values fall within these
boundaries in a given local neighborhood, they influence the
model’s decision toward or away from a particular class.

MOXAI’s correction algorithm utilizes LIME and examines
the top five common explanations provided by this approach
for all instances. It performs the following steps: it counts
the frequency of these explanations; it then ranks the expla-
nations based on their frequency counts. Next, it records the
lowest and highest bounds observed for the most influential
feature in the explanations. Human input may be needed from
a domain expert who has viewed the data and understands the
feature boundaries at this stage. This is necessary because
LIME sometimes presents an upper or lower-bound inequal-
ity. In such cases, we need to determine the missing bound-
ary. The algorithm then iterates over the generated list and
replaces the corresponding feature in the explanations with
a randomly generated float within the boundary range. We
continue the iteration if this alteration does not rectify the
model’s prediction. If the alteration corrects the prediction,
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Table 1. Results of trained models on the test set.

Recall Precision F1-Score
Nearest Neighbor (KNN) 0.97 0.97 0.97
Decision Tree (DT) 0.99 0.99 0.99
Random Forest (RF) 0.99 0.99 0.99
Gradient Boosting (GBM) 0.99 0.99 0.99
Neural Network (MLP) 0.97 0.94 0.96

Table 2. Detailed results of the trained decision tree on the
test set.

Accuracy Recall Precision F1-score
HDF 0.99 0.95 0.93 0.94
PWF 0.99 0.92 0.89 0.90
OSF 0.99 0.73 0.87 0.78

Machine-Failure 0.99 0.99 0.99 0.99

we proceed to the next misclassified sample. We further em-
phasize that this approach merely identifies the approximate
decision boundary of the model rather than identifying the ac-
tual cause of the defect. We can only observe the parameter
responsible for the model’s misclassification, which may or
may not directly correlate with the underlying cause of the
defect. The outcomes of this algorithm are discussed in Sec-
tion 4.3.

4. EXPERIMENTAL SETUP AND RESULTS

We demonstrate MOXAI’s operation using the AI4I dataset, a
synthetic dataset commonly used in the scientific community.
The AI4I dataset covers a realistic industrial use case and pro-
vides an analytical definition for most error types, which can
be used to validate corrections as suggested by MOXAI. The
dataset consists of 10,000 samples with five numerical fea-
tures of a milling process, a categorical feature for different
product types, and the target variables, which describe the
state of five error types:

• Tool wear failure (TWF): The tool fails after a random
up-time between 200 - 240 minutes.

• Heat dissipation failure (HDF): The tool fails due to
small temperature differences between the tool and air
and slow rotational speeds.

• Power failure (PWF): The tool fails for very high or very
low power, defined as the product of torque and rota-
tional speed.

• Overstrain failure (OSF): Product variant-dependent er-
ror for high tool wear and torque combination.

• Random failures (RNF): A randomly assigned error type.

We exclude TWF and RNF failures from the evaluations due
to their random component, as we require an analytical defi-
nition of the error for validation.

Figure 2. Power Failure (PWF) healthy and defect samples in
the test set, as well as generated counterfactual samples, for
rotation speed vs. torque of the milling process.

4.1. Data Preprocessing and Modeling

The machine learning model is the core of our approach,
and we trained different models following standard best prac-
tices. We use a stratified split of 80% of the data for train-
ing/validation and 20% for testing, resulting in 7714 samples
for the healthy state and 234 defects, of which 115 are HDF,
94 are PWF, and 95 are OSF – note that some machine defects
are a combination of multiple failures. The imbalance in the
data can be seen as an indication for up-sampling approaches
such as SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer,
2002). Still, our experiments showed no significant improve-
ment, and our reported models are trained on the provided
data only. We performed experiments using five different
model architectures implemented by scikit-learn1: k-nearest
neighbors , Decision Tree, Random Forest, Gradient Boost-
ing, and Neural Network, and report the results in Table 1,
as well as the breakdown of the best-performing model in
Table 2, where we see that the detection of the HDF and
PWF are more trivial than ODF, which is consistent among
the models. Therefore, we can assume that the misclassifica-
tion of machine failure is potentially caused by detecting the
OSF.

4.2. Parameter-Setting Recommendations

MOXAI uses DiCE as an explainer backend, which was ini-
tialized using the trained model and the training data. We
use the genetic algorithm provided by DiCE, as it supports
parameters that prioritize counterfactuals similar to training
data and thus avoid regions in the parameter space that are
not well defined due to missing training data. We allow vari-
ation in all features, but real-life use cases will likely require
limiting the parameters that can be modified at the machine.
1https://scikit-learn.org
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Table 3. Accuracy of suggested parameters.

KNN DT RF GBM MLP
HDF 0.89 1.0 1.0 0.94 0.78
PWF 0.91 1.0 1.0 1.0 0.71
OSF 0.58 0.95 0.95 0.84 0.47
overall accuracy 0.81 0.98 0.98 0.93 0.68

Figure 3. Pairplot of the test set and created counterfactual
samples, for the five different numerical features characteriz-
ing the milling process.

To evaluate MOXAI, we use the analytic definition of errors
provided by the AI4I dataset creators. For each defective
sample of the test set, we use MOXAI to calculate a sug-
gested set of machine parameters. Figures 2 and 3 depict the
healthy and defective samples in the test set and the generated
counterfactuals. We take the error definition to determine if
the solution proposed by MOXAI actually solved the prob-
lem and corresponded to a healthy product. We report the
percentage of successful corrections as accuracy in Table 3.

4.3. Correction of Model Failures

We generate LIME explanations for each failed sample using
the models discussed in the preceding section. We encounter
21 failed samples, comprising 15 false negatives (FNs) and
six false positives (FPs). Through the analysis of modeling
separated failure modes, we noticed that these misclassifica-
tions predominantly stem from the model’s failed attempt to
detect PFW and OSF accurately. We extract the explanations
using the algorithm detailed in Section 3.2. To correct false
positives (FPs), we randomly generate float values within
the approximate feature range identified by LIME to pro-
duce counterfactual instances. We leverage our understand-
ing of value ranges given by dataset providers, contributing

Figure 4. LIME’s local explanations for a misclassified sam-
ple as not a machine failure (FN).

Figure 5. LIME’s local explanations for a sample correctly
classified as a machine failure (TP).

to failures in each specific mode, to rectify errors in parame-
ter settings. Similarly, we apply this method to false negatives
(FNs), mostly from inaccuracies in process temperature val-
ues. By generating counterfactual instances, we illustrate the
adjustments required in parameter values to identify defective
samples accurately. In Figure 4 and Figure 5, we demonstrate
a comparison of a true positive (correctly detected machine
failure) with a scenario where the model predicted a failure
as ”not a failure” with low confidence (the prediction proba-
bility for the class Failure is 0.47) explained by LIME. The
plot shows that, even though the features Air temperature,
Torque and Tool wear are positively contributing to this pre-
diction being a failed sample, the values of Rotational speed
and Process temperature are shifting the model’s decision to-
wards the class ”not a Failure”. MOXAI suggests a minor
change of Process Temperature to a value slightly smaller
than 311.10, creates a counterfactual, and corrects this pre-
diction. In practice, the domain expert should verify whether
this change is valid and does not contradict the definition of
this failure mode.

5. DISCUSSION

The evaluation of model performance in a classification task
unveils nuanced observations. While all models exhibit sat-
isfactory accuracy in data classification, their effectiveness
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in generating reliable counterfactual samples varies. No-
tably, tree-based models emerge as the most robust, surpass-
ing alternative methodologies, such as Multi-Layer Percep-
tron (MLP) and K-Nearest Neighbors (KNN). Furthermore,
an analysis of error types reveals differences among model
performances. Specifically, most models demonstrate profi-
ciency in addressing tool wear (PWF) and heat dissipation
(HDF) errors but struggle when confronted with errors aris-
ing from multiple product types (OSF). These findings un-
derscore the importance of assessing classification accuracy
and considering models’ ability to provide dependable coun-
terfactual samples and their efficacy in handling diverse error
types. Moreover, the current state of MOXAI is limited to the
parameters within the proximity of its training set. Therefore,
it cannot suggest optimizations for unseen production scenar-
ios. One approach to address this limitation could be the us-
age of digital twin solutions that are more flexible when it
comes to approximating new parameters and production set-
tings.

We underscore the significance of comprehending the
model’s decision-making process in failure detection and why
these particular counterfactuals were suggested. A guided
approach aids in understanding why a model failed and
whether the model’s identified correlations are logical. While
MOXAI offers an interpretable and human-in-the-loop sys-
tem for comprehending model failures and suggesting mean-
ingful samples tailored to this specific use case, the semi-
automatic counterfactuals produced by our human-guided ap-
proach could benefit from considering feature co-linearities
and interactions, and a domain expert should verify them to
exclude nonsensical examples. This process is crucial for
gauging the model’s reliability and assessing the suitability of
a fully automated counterfactual generation module. There-
fore, the operator can plainly trust the model’s recommen-
dations to choose the best settings based on the explanations
provided by LIME’s output.

6. CONCLUSION

The approach of XAI to enhance data-driven process tun-
ing for optimizing production or predictive maintenance is
promising. MOXAI proposes a data-driven, XAI-powered
approach to optimizing manufacturing machine parameters,
relying on pre-trained ML models of any nature. We have
trained different ML models for failure prediction in a pop-
ular synthetic dataset representing a realistic industrial sce-
nario, applying MOXAI’s information flow to identify poten-
tial corrections to improve failure samples and improve un-
derstanding of the operation of these ML models.

DiCE is a key element in automatically generating counter-
factual explanations, which can assist operators in adjusting
process settings so that machine failures or degraded produc-
tion quality can be reduced. Applying LIME explanations

to address false predictions within our model proved insight-
ful. We successfully rectified both false positives and false
negatives by analyzing failure modes and generating counter-
factual instances based on LIME insights. Additionally, our
demonstration of LIME’s output underscores its potential to
enhance model decisions’ interpretability.

Enhancing the understanding of counterfactual methods is
important for future advancements. This ensures that such
methods foster a causal understanding for human operators
while avoiding any risks of biased, sub-optimal, or erroneous
explanations.
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